Mercurial > hg > aimc
view src/Modules/BMM/ModulePZFC.h @ 94:cbe78255b12c
- AWS
author | tomwalters |
---|---|
date | Fri, 13 Aug 2010 10:28:14 +0000 |
parents | 2204b3a05a28 |
children |
line wrap: on
line source
// Copyright 2008-2010, Thomas Walters // // AIM-C: A C++ implementation of the Auditory Image Model // http://www.acousticscale.org/AIMC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*! \file * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented in C++ by Tom * Walters from the AIM-MAT module based on Dick Lyon's code. * * \author Thomas Walters <tom@acousticscale.org> * \date created 2008/02/05 * \version \$Id$ */ #ifndef _AIMC_MODULES_BMM_PZFC_H_ #define _AIMC_MODULES_BMM_PZFC_H_ #include <vector> #include "Support/Module.h" #include "Support/Parameters.h" #include "Support/SignalBank.h" namespace aimc { using std::vector; class ModulePZFC : public Module { public: explicit ModulePZFC(Parameters *pParam); virtual ~ModulePZFC(); /*! \brief Process a buffer */ virtual void Process(const SignalBank &input); private: /*! \brief Reset all internal state variables to their initial values */ virtual void ResetInternal(); /*! \brief Prepare the module * \param input Input SignalBank * \param output true on success false on failure */ virtual bool InitializeInternal(const SignalBank &input); /*! \brief Set the filterbank parameters according to a fit matrix from Unoki * and Lyon's fitting routine */ bool SetPZBankCoeffsERBFitted(); /*! \brief Set the filterbank parameters using the non-fitted parameter * values, spaced along an ERB scale */ bool SetPZBankCoeffsERB(); /*! \brief Set the filterbank parameters using the non-fitted parameter * values, using the Greenwood formula (?) for channel spacing. */ bool SetPZBankCoeffsOrig(); /*! \brief Sets the general filterbank coefficients */ bool SetPZBankCoeffs(); /*! \brief Automatic Gain Control */ void AGCDampStep(); /*! \brief Detector function - halfwave rectification etc. Used internally, * but not applied to the output. */ float DetectFun(float fIN); /*! \brief Minimum */ inline float Minimum(float a, float b); int channel_count_; int buffer_length_; int agc_stage_count_; float sample_rate_; float last_input_; // Parameters // User-settable values float pole_damping_; float zero_damping_; float zero_factor_; float step_factor_; float bandwidth_over_cf_; float min_bandwidth_hz_; float agc_factor_; float cf_max_; float cf_min_; float mindamp_; float maxdamp_; bool do_agc_step_; bool use_fitted_parameters_; // Internal Buffers // Initialised once vector<float> pole_dampings_; vector<float> agc_epsilons_; vector<float> agc_gains_; vector<float> pole_frequencies_; vector<float> za0_; vector<float> za1_; vector<float> za2_; vector<float> rmin_; vector<float> rmax_; vector<float> xmin_; vector<float> xmax_; // Modified by algorithm at each time step vector<float> detect_; vector<vector<float> > agc_state_; vector<float> state_1_; vector<float> state_2_; vector<float> previous_out_; vector<float> pole_damps_mod_; vector<float> inputs_; }; } #endif // _AIMC_MODULES_BMM_PZFC_H_