Mercurial > hg > aimc
view src/Modules/BMM/ModuleGammatone_test.py @ 94:cbe78255b12c
- AWS
author | tomwalters |
---|---|
date | Fri, 13 Aug 2010 10:28:14 +0000 |
parents | c5f5e9569863 |
children |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 # # AIM-C: A C++ implementation of the Auditory Image Model # http://www.acousticscale.org/AIMC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ModuleGammatone_test.py Created by Thomas Walters on 2010-02-15. Copyright 2010 Thomas Walters <tom@acousticscale.org> Test for the Slaney IIR gammatone. """ import aimc from scipy import io import wave import scipy def main(): data_file = "src/Modules/BMM/testdata/gammatone.mat" data = io.loadmat(data_file) # The margin of error allowed between the returned values from AIM-C and # the stored MATLAB values. epsilon = 0.000001; input_wave = data["input_wave"] sample_rate = data["sample_rate"] centre_frequencies = data["centre_frequencies"] expected_output = data["expected_output"] (channel_count, frame_count) = expected_output.shape buffer_length = 20000; input_sig = aimc.SignalBank() input_sig.Initialize(1, buffer_length, 48000) parameters = aimc.Parameters() parameters.Load("src/Modules/BMM/testdata/gammatone.cfg") mod_gt = aimc.ModuleGammatone(parameters) mod_gt.Initialize(input_sig) correct_count = 0; incorrect_count = 0; out = scipy.zeros((channel_count, buffer_length)) cfs = scipy.zeros((channel_count)) for i in range(0, buffer_length): input_sig.set_sample(0, i, input_wave[i][0]) mod_gt.Process(input_sig) out_sig = mod_gt.GetOutputBank() for ch in range(0, out_sig.channel_count()): cfs[ch] = out_sig.centre_frequency(ch); for i in range(0, buffer_length): out[ch, i] = out_sig.sample(ch, i) outmat = dict(filterbank_out=out, centre_frequencies_out=cfs) io.savemat("src/Modules/BMM/testdata/out_v2.mat", outmat) pass if __name__ == '__main__': main()