Mercurial > hg > aimc
view src/Modules/SSI/ModuleSSI.cc @ 15:b4cafba48e9d
-<math.h> replaced wit <cmath> where possible
-SSI support added but not yet tested
author | tomwalters |
---|---|
date | Fri, 19 Feb 2010 15:19:27 +0000 |
parents | 88fe02836a6b |
children | f4e712d41321 |
line wrap: on
line source
// Copyright 2010, Thomas Walters // // AIM-C: A C++ implementation of the Auditory Image Model // http://www.acousticscale.org/AIMC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /*! * \author Thomas Walters <tom@acousticscale.org> * \date created 2010/02/19 * \version \$Id$ */ #include <cmath> #include "Modules/SSI/ModuleSSI.h" namespace aimc { ModuleSSI::ModuleSSI(Parameters *params) : Module(params) { module_description_ = "Size-shape image (aka the 'sscAI')"; module_identifier_ = "ssi"; module_type_ = "ssi"; module_version_ = "$Id$"; //do_pitch_cutoff_ = parameters_->DefaultBool("ssi.pitch_cutoff", false); ssi_width_cycles_ = parameters_->DefaultFloat("ssi.width_cycles", 20.0f); } ModuleSSI::~ModuleSSI() { } bool ModuleSSI::InitializeInternal(const SignalBank &input) { // Copy the parameters of the input signal bank into internal variables, so // that they can be checked later. sample_rate_ = input.sample_rate(); buffer_length_ = input.buffer_length(); channel_count_ = input.channel_count(); float lowest_cf = input.centre_frequency(0); ssi_width_samples_ = sample_rate_ * ssi_width_cycles_ / lowest_cf; if (ssi_width_samples_ > buffer_length_) { ssi_width_samples_ = buffer_length_; float cycles = ssi_width_samples_ * lowest_cf / sample_rate_; LOG_INFO(_T("Requested SSI width of %f cycles is too long for the " "input buffer length of %d samples. The SSI will be " "truncated at %d samples wide. This corresponds to a width " "of %f cycles."), ssi_width_cycles_, buffer_length_, ssi_width_samples_, cycles); ssi_width_cycles_ = cycles; } output_.Initialize(channel_count_, ssi_width_samples_, sample_rate_); return true; } void ModuleSSI::ResetInternal() { } void ModuleSSI::Process(const SignalBank &input) { // Check to see if the module has been initialized. If not, processing // should not continue. if (!initialized_) { LOG_ERROR(_T("Module %s not initialized."), module_identifier_.c_str()); return; } // Check that ths input this time is the same as the input passed to // Initialize() if (buffer_length_ != input.buffer_length() || channel_count_ != input.channel_count()) { LOG_ERROR(_T("Mismatch between input to Initialize() and input to " "Process() in module %s."), module_identifier_.c_str()); return; } output_.set_start_time(input.start_time()); for (int ch = 0; ch < channel_count_; ++ch) { // Copy the buffer from input to output, addressing by h-value for (int i = 0; i < ssi_width_samples_; ++i) { float h = static_cast<float>(i) * ssi_width_cycles_ / static_cast<float>(ssi_width_samples_); float cycle_samples = sample_rate_ / input.centre_frequency(ch); // The index into the input array is a floating-point number, which is // split into a whole part and a fractional part. The whole part and // fractional part are found, and are used to linearly interpolate // between input samples to yield an output sample. double whole_part; float frac_part = modf(h * cycle_samples, &whole_part); int sample = static_cast<int>(whole_part); float val; if (sample < buffer_length_ - 1) { float curr_sample = input.sample(ch, sample); float next_sample = input.sample(ch, sample + 1); val = curr_sample + frac_part * (next_sample - curr_sample); } else { val = 0.0f; } output_.set_sample(ch, i, val); } } PushOutput(); } } // namespace aimc