Mercurial > hg > aimc
view experiments/scripts/cnbh-syllables/results_plotting/spider_plot.py @ 100:ae195c41c7bd
- Python results plotting (finally).
- Proper results reporting script.
- Test on ALL talkers. The results script then generates a summary based on all the various subsets.
- Fixed chown users (hopefully sudos to be deleted entirely soon)
- More...
author | tomwalters |
---|---|
date | Mon, 13 Sep 2010 18:34:23 +0000 |
parents | |
children | 9416e88d7c56 |
line wrap: on
line source
#!/usr/bin/env python """ spider_plot.py Created by Thomas Walters on 2010-09-12. Copyright 2010 Google. All rights reserved. """ import numpy as np import pylab as p import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib as mpl from matplotlib import cm import matplotlib.ticker as ticker total_value_count=185 central_vtl=15 central_vtl_scaling=112.32 # Read in a file with lines in the form # Pitch Scale Percentage xs=[] ys=[] zs=[] f = open('plottable_results.txt', 'r') for line in f: if line[0] != "#": values = line.strip().split(' ') xs.append(central_vtl*central_vtl_scaling/float(values[1])) ys.append(float(values[0])) zs.append(float(values[2])) # Define a tiny sphere, centered on the origin, which # we'll shift to the desired position. u=np.r_[0:2*np.pi:50j] v=np.r_[0:np.pi:50j] sx=0.01*np.outer(np.cos(u),np.sin(v)) sy=0.01*np.outer(np.sin(u),np.sin(v)) sz=2.5*np.outer(np.ones(np.size(u)),np.cos(v)) fig=p.figure() ax = p3.Axes3D(fig, azim=-80, elev=60) colormap = cm.get_cmap('jet', 100) # Note: here I fake out the lack of proper logarihmic scales on 3D axes in # matplotlib by just plotting log values on a linear scale and renaming # the labels. # (This doesn't work: ax.w_yaxis.set_scale('log') ax.w_xaxis.set_scale('log')) # Plot the values seven at a time as dark lines. # These are the individual spokes of the spoke pattern. n=7 for i in xrange(0,8): ax.plot(np.log(xs[i*n:(i+1)*n]), np.log(ys[i*n:(i+1)*n]), zs[i*n:(i+1)*n], color=[0,0,0]) for x,y,z in zip(xs,ys,zs): ax.plot(np.log([x, x]), np.log([y, y]), [z, 0], color=[0.8,0.8,0.8]) ax.plot_surface(sx+np.log(x),sy+np.log(y),sz+z, color=colormap(int(z)), linewidth=0) ax.set_ylabel('GPR/Hz') ax.set_xlabel('VTL/cm') ax.set_zlabel('Percent correct') ax.set_ylim3d(np.log([131,225])) ax.set_xlim3d(np.log([9.9, 22.1])) ax.set_zlim3d([-1, 101]) ax.w_zaxis.set_major_locator(ticker.FixedLocator([0, 20, 40, 60, 80, 100])) ax.w_xaxis.set_major_locator(ticker.FixedLocator(np.log([10,15,22]))) ax.w_xaxis.set_ticklabels(['10', '15', '22']) ax.w_yaxis.set_major_locator(ticker.FixedLocator(np.log([132, 172, 224]))) ax.w_yaxis.set_ticklabels(['132', '172', '224']) #for a in ax.w_xaxis.get_ticklines()+ax.w_xaxis.get_ticklabels(): # a.set_visible(False) #for a in ax.w_yaxis.get_ticklines()+ax.w_yaxis.get_ticklabels(): # a.set_visible(False) #p.show() p.savefig('results.png')