Mercurial > hg > aimc
view trunk/carfac/carfac.cc @ 672:a9694d0bb55a
Fix scons build of library and test.
Deleted main.cc since libgtest comes with a corresponding main library.
Everything compiles and the tests run on Ubuntu, but the tests all fail.
author | ronw@google.com |
---|---|
date | Thu, 23 May 2013 18:12:22 +0000 |
parents | 933cf18d9a59 |
children | 7f424c1a8b78 |
line wrap: on
line source
// // carfac.cc // CARFAC Open Source C++ Library // // Created by Alex Brandmeyer on 5/10/13. // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "carfac.h" void CARFAC::Design(const int n_ears, const FPType fs, const CARParams& car_params, const IHCParams& ihc_params, const AGCParams& agc_params) { n_ears_ = n_ears; fs_ = fs; ears_.resize(n_ears_); n_ch_ = 0; FPType pole_hz = car_params.first_pole_theta_ * fs / (2 * PI); while (pole_hz > car_params.min_pole_hz_) { ++n_ch_; pole_hz = pole_hz - car_params.erb_per_step_ * ERBHz(pole_hz, car_params.erb_break_freq_, car_params.erb_q_); } pole_freqs_.resize(n_ch_); pole_hz = car_params.first_pole_theta_ * fs / (2 * PI); for (int ch = 0; ch < n_ch_; ++ch) { pole_freqs_(ch) = pole_hz; pole_hz = pole_hz - car_params.erb_per_step_ * ERBHz(pole_hz, car_params.erb_break_freq_, car_params.erb_q_); } max_channels_per_octave_ = log(2) / log(pole_freqs_(0) / pole_freqs_(1)); // Once we have the basic information about the pole frequencies and the // number of channels, we initialize the ear(s). for (auto& ear : ears_) { ear.InitEar(n_ch_, fs_, pole_freqs_, car_params, ihc_params, agc_params); } } CARFACOutput CARFAC::Run(const std::vector<std::vector<float>>& sound_data) { // We initialize one output object to store the final output. CARFACOutput seg_output; int n_audio_channels = sound_data.size(); int32_t seg_len = 441; // We use a fixed segment length for now. int32_t n_timepoints = sound_data[0].size(); int32_t n_segs = ceil((n_timepoints * 1.0) / seg_len); seg_output.InitOutput(n_audio_channels, n_ch_, n_timepoints); // These values store the start and endpoints for each segment int32_t start; int32_t length = seg_len; // This section loops over the individual audio segments. for (int32_t i = 0; i < n_segs; ++i) { // For each segment we calculate the start point and the segment length. start = i * seg_len; if (i == n_segs - 1) { // The last segment can be shorter than the rest. length = n_timepoints - start; } std::vector<std::vector<float>> segment_data; segment_data.resize(n_audio_channels); for (int channel = 0; channel < n_audio_channels; ++channel) { segment_data[channel].resize(length); for (int32_t timepoint = 0; timepoint < length; ++timepoint) { segment_data[channel][timepoint] = sound_data[channel][start + timepoint]; } } // Once we've determined the start point and segment length, we run the // CARFAC model on the current segment. RunSegment(segment_data, start, length, &seg_output, true); // Afterwards we merge the output for the current segment into the larger // output structure for the entire audio file. } return seg_output; } void CARFAC::RunSegment(const std::vector<std::vector<float>>& sound_data, const int32_t start, const int32_t length, CARFACOutput* seg_output, const bool open_loop) { // The number of ears is equal to the number of audio channels. This could // potentially be removed since we already know the n_ears_ during the design // stage. int n_ears = sound_data.size(); // The number of timepoints is determined from the length of the audio // segment. int32_t n_timepoints = sound_data[0].size(); // A nested loop structure is used to iterate through the individual samples // for each ear (audio channel). FloatArray car_out(n_ch_); FloatArray ihc_out(n_ch_); bool updated; // This variable is used by the AGC stage. for (int32_t i = 0; i < n_timepoints; ++i) { for (int j = 0; j < n_ears; ++j) { // First we create a reference to the current Ear object. Ear& ear = ears_[j]; // This stores the audio sample currently being processed. FPType input = sound_data[j][i]; // Now we apply the three stages of the model in sequence to the current // audio sample. ear.CARStep(input, &car_out); ear.IHCStep(car_out, &ihc_out); updated = ear.AGCStep(ihc_out); // These lines assign the output of the model for the current sample // to the appropriate data members of the current ear in the output // object. seg_output->StoreNAPOutput(start + i, j, ihc_out); seg_output->StoreBMOutput(start + i, j, car_out); seg_output->StoreOHCOutput(start + i, j, ear.za_memory()); seg_output->StoreAGCOutput(start + i, j, ear.zb_memory()); } if (updated && n_ears > 1) { CrossCouple(); } if (! open_loop) { CloseAGCLoop(); } } } void CARFAC::CrossCouple() { for (int stage = 0; stage < ears_[0].agc_nstages(); ++stage) { if (ears_[0].agc_decim_phase(stage) > 0) { break; } else { FPType mix_coeff = ears_[0].agc_mix_coeff(stage); if (mix_coeff > 0) { FloatArray stage_state; FloatArray this_stage_values = FloatArray::Zero(n_ch_); for (auto& ear : ears_) { stage_state = ear.agc_memory(stage); this_stage_values += stage_state; } this_stage_values /= n_ears_; for (auto& ear : ears_) { stage_state = ear.agc_memory(stage); ear.set_agc_memory(stage, stage_state + mix_coeff * (this_stage_values - stage_state)); } } } } } void CARFAC::CloseAGCLoop() { for (auto& ear: ears_) { FloatArray undamping = 1 - ear.agc_memory(0); // This updates the target stage gain for the new damping. ear.set_dzb_memory((ear.zr_coeffs() * undamping - ear.zb_memory()) / ear.agc_decimation(0)); ear.set_dg_memory((ear.StageGValue(undamping) - ear.g_memory()) / ear.agc_decimation(0)); } }