Mercurial > hg > aimc
view experiments/scripts/master.sh @ 101:9416e88d7c56
- Pretty-plotting
- Test on everything
- Generalised beyond standard AMI
author | tomwalters |
---|---|
date | Tue, 14 Sep 2010 00:18:47 +0000 |
parents | ae195c41c7bd |
children | 5185022d76a3 |
line wrap: on
line source
#!/bin/bash # Copyright 2010 Thomas Walters <tom@acousticscale.org> # # Run a series of experiments which compare MFCC features generated by HTK to # AIM features generated using AIM-C using a series of syllable recogntiton # tasks. # This script expects to be run from within the AIM-C source tree. # It builds the HTK binaries and AIM-C AIMCopy binary if they're not # present. # The following environment varaibles should be set before this script is run: # SYLLABLES_DATABASE_URL - URL of a tar file containing the CNBH syllables # database in FLAC format # HTK_USERNAME and HTK_PASSWORD - username and password for the site at # http://htk.eng.cam.ac.uk/ # NUMBER_OF_CORES - total number of machine cores # Set these to be the location of your input database, and desired output # locations. (Note: the user running this script needs write permissions on # the $WORKING_VOLUME.) WORKING_VOLUME=/mnt/scratch1 SYLLABLES_DATABASE_TAR=$WORKING_VOLUME/001-downloaded_sounds_data/cnbh-syllables.tar SOUNDS_ROOT=$WORKING_VOLUME/002-sounds/ FEATURES_ROOT=$WORKING_VOLUME/003-features/ HMMS_ROOT=$WORKING_VOLUME/004-hmms/ HTK_ROOT=$WORKING_VOLUME/software/htk/ AIMC_ROOT=$WORKING_VOLUME/software/aimc/ # Number of cores on the experimental machine. Various scripts will try to use # this if it's set. # NUMBER_OF_CORES=8 # Fail if any command fails set -e # Fail if any variable is unset set -u ###### # Step 001 - Get the sounds database if [ ! -e $SYLLABLES_DATABASE_TAR ]; then mkdir -p `dirname $SYLLABLES_DATABASE_TAR` wget -O $SYLLABLES_DATABASE_TAR $SYLLABLES_DATABASE_URL fi if [ ! -d $SOUNDS_ROOT ]; then mkdir -p $SOUNDS_ROOT fi # Untar the CNBH syllables database, and convert the files from FLAC to WAV. if [ ! -e $SOUNDS_ROOT/.untar_db_success ]; then tar -x -C $SOUNDS_ROOT -f $SYLLABLES_DATABASE_TAR touch $SOUNDS_ROOT/.untar_db_success fi # Convert the database to .WAV format and place it in $SOUNDS_ROOT/clean echo "Converting CNBH-syllables database from FLAC to WAV..." ./cnbh-syllables/feature_generation/convert_flac_to_wav.sh $SOUNDS_ROOT # ###### ##### # Step 002 - # Generate versions of the CNBH syllables spoke pattern with a range of # signal-to-noise ratios (SNRs). The versions are put in the directory # ${SOUNDS_ROOT}/${SNR}_dB/ for each SNR in $SNRS. SNRS="30 27 24 21 18 15 12 9 6 3 0" #SNRS="30" # For testing ./cnbh-syllables/feature_generation/pink_noise.sh $SOUNDS_ROOT/clean/ "$SNRS" # Make the list of all feature drectories FEATURE_DIRS="clean" for SNR in $SNRS; do FEATURE_DIRS="$FEATURE_DIRS snr_${SNR}dB" done # Generate feature sets (for the full range of SNRs in $FEATURE_DIRS) # 1. Standard MFCC features # 2. AIM features # 3. MFCC features with optimal VTLN if [ ! -d $FEATURES_ROOT ]; then mkdir -p $FEATURES_ROOT fi if [ ! -e $HTK_ROOT/.htk_installed_success ]; then ./HTK/install_htk.sh $HTK_ROOT fi if [ ! -e $AIMC_ROOT/.aimc_build_success ]; then ./aimc/build_aimc.sh $AIMC_ROOT fi for SOURCE_SNR in $FEATURE_DIRS; do if [ ! -e $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success ]; then mkdir -p $FEATURES_ROOT/mfcc/$SOURCE_SNR/ # Generate the list of files to convert ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ htk # Run the conversion ./cnbh-syllables/feature_generation/run_hcopy.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $NUMBER_OF_CORES touch $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success fi if [ ! -e $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success ]; then mkdir -p $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ # Generate the file list and run the conversion (all one step, since this # version uses a different configuration for each talker) ./cnbh-syllables/feature_generation/run_mfcc_vtln_conversion.sh $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ touch $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success fi if [ ! -e $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success ]; then mkdir -p $FEATURES_ROOT/aim/$SOURCE_SNR/ ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ "" # Run the conversion ./cnbh-syllables/feature_generation/run_aimcopy.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $NUMBER_OF_CORES touch $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success fi done mkdir -p $HMMS_ROOT # Now run a bunch of experiments. # For each of the feature types, we want to run HMMs with a bunch of # parameters. TRAINING_ITERATIONS="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15" # 16 17 18 19 20" #TESTING_ITERATIONS="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20" TESTING_ITERATIONS="15" #HMM_STATES="3 4 5 6 7 8" HMM_STATES="4" #HMM_OUTPUT_COMPONENTS="1 2 3 4 5 6 7" HMM_OUTPUT_COMPONENTS="4" run_train_test () { # TODO(tom): Make sure that the training SNR is generated first for SOURCE_SNR in $FEATURE_DIRS; do WORK=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/$SOURCE_SNR/$TALKERS/ mkdir -p $WORK FEATURES_DIR=$FEATURES_ROOT/$FEATURE_CLASS/$SOURCE_SNR/ ./cnbh-syllables/run_training_and_testing/train_test_sets/generate_train_test_lists.sh \ $TALKERS \ $WORK \ $FEATURES_DIR \ $FEATURE_SUFFIX TRAINING_SCRIPT=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/$TRAINING_SNR/$TALKERS/training_script TRAINING_MASTER_LABEL_FILE=$HMMS_ROOT/$FEATURE_CLASS/$FEATURE_SUFFIX/$TRAINING_SNR/$TALKERS/training_master_label_file TESTING_SCRIPT=$WORK/testing_script TESTING_MASTER_LABEL_FILE=$WORK/testing_master_label_file ./cnbh-syllables/run_training_and_testing/gen_htk_base_files.sh $WORK ./cnbh-syllables/run_training_and_testing/test_features.sh \ "$WORK" \ "$FEATURES_ROOT/$FEATURE_CLASS/$SOURCE_SNR/" \ "$FEATURE_SUFFIX" \ "$HMM_STATES" \ "$HMM_OUTPUT_COMPONENTS" \ "$TRAINING_ITERATIONS" \ "$TESTING_ITERATIONS" \ "$FEATURE_SIZE" \ "$FEATURE_TYPE" \ "$TRAINING_SCRIPT" \ "$TESTING_SCRIPT" \ "$TRAINING_MASTER_LABEL_FILE" \ "$TESTING_MASTER_LABEL_FILE" done } ######################## # Standard MFCCs FEATURE_CLASS=mfcc FEATURE_SUFFIX=htk FEATURE_SIZE=39 FEATURE_TYPE=MFCC_0_D_A TALKERS=inner_talkers TRAINING_SNR=clean run_train_test ######################## ######################## # Standard MFCCs # Train on extrema FEATURE_CLASS=mfcc FEATURE_SUFFIX=htk FEATURE_SIZE=39 FEATURE_TYPE=MFCC_0_D_A TALKERS=outer_talkers TRAINING_SNR=clean run_train_test ######################## ######################## # MFCCs with VTLN FEATURE_CLASS=mfcc_vtln FEATURE_SUFFIX=htk FEATURE_SIZE=39 FEATURE_TYPE=MFCC_0_D_A TALKERS=inner_talkers TRAINING_SNR=clean run_train_test ######################## ######################## # MFCCs with VTLN # Train on extrema FEATURE_CLASS=mfcc_vtln FEATURE_SUFFIX=htk FEATURE_SIZE=39 FEATURE_TYPE=MFCC_0_D_A TALKERS=outer_talkers TRAINING_SNR=clean run_train_test ######################## AIM_FEATURE_SUFFIXES="slice_1_no_cutoff ssi_profile_no_cutoff slice_1_cutoff ssi_profile_cutoff smooth_nap_profile" for f in $AIM_FEATURE_SUFFIXES do ######################## # AIM Features # Inner talkers FEATURE_CLASS=aim FEATURE_SUFFIX=$f FEATURE_SIZE=12 FEATURE_TYPE=USER_E_D_A TALKERS=inner_talkers TRAINING_SNR=clean run_train_test ######################## ######################## # AIM Features # Inner talkers FEATURE_CLASS=aim FEATURE_SUFFIX=$f FEATURE_SIZE=12 FEATURE_TYPE=USER_E_D_A TALKERS=outer_talkers TRAINING_SNR=clean run_train_test ######################## done