Mercurial > hg > aimc
view src/Scripts/Strobes_test.py @ 32:9122efd2b227
-New AIMCopy main for the SSI features (temporary hack till I get a working module load system)
-LocalMax strobe criterion. This is faster and better than the parabola version, which still seems buggy.
-Noise generator module. Adds noise to a signal. Uses boost for the random number generator.
-New options for the SSI
-Slice now respects all its flags (oops!).
-MATLAB functions for visualisation
-Scripts for generating data to view in MATLAB
-Script to download and build HTK - useful for running experiments
author | tomwalters |
---|---|
date | Thu, 25 Feb 2010 22:02:00 +0000 |
parents | |
children | c5f5e9569863 |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 # # AIM-C: A C++ implementation of the Auditory Image Model # http://www.acousticscale.org/AIMC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Profiles_test.py Created by Thomas Walters on 2010-02-22. Copyright 2010 Thomas Walters <tom@acousticscale.org> Test the AIM-C model from filterbank to SSI profiles """ import aimc from scipy.io import wavfile from scipy import io import scipy import pylab import numpy from itertools import izip, chain, repeat def grouper(n, iterable, padvalue=None): "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')" return izip(*[chain(iterable, repeat(padvalue, n-1))]*n) def BankToArray(out_bank): channel_count = out_bank.channel_count() out_buffer_length = out_bank.buffer_length() out = scipy.zeros((channel_count,out_buffer_length)) for ch in range(0, channel_count): for i in range(0, out_buffer_length): out[ch, i] = out_bank.sample(ch, i) return out def StrobesToList(bank): channel_count = bank.channel_count() out = scipy.zeros((channel_count,), dtype=numpy.object) for ch in range(0, channel_count): s = [] for i in range(0, bank.strobe_count(ch)): s.append(bank.strobe(ch, i)) out[ch] = s return out def main(): wave_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/Sounds/" file_name = "ii/ii172.5p112.5s100.0t+000itd" wave_suffix = ".wav" frame_period_ms = 10; wave_filename = wave_path + file_name + wave_suffix (sample_rate, input_wave) = wavfile.read(wave_filename) wave_length = input_wave.size buffer_length = int(frame_period_ms * sample_rate / 1000) input_sig = aimc.SignalBank() input_sig.Initialize(1, buffer_length, sample_rate) parameters = aimc.Parameters() parameters.SetInt("input.buffersize", 480) mod_gt = aimc.ModuleGammatone(parameters) mod_hl = aimc.ModuleHCL(parameters) mod_strobes = aimc.ModuleLocalMax(parameters) mod_gt.AddTarget(mod_hl) mod_hl.AddTarget(mod_strobes) mod_gt.Initialize(input_sig) correct_count = 0; incorrect_count = 0; scaled_wave = [] for sample in input_wave: scaled_wave.append(float(sample / float(pow(2,15) - 1))) i = 0 wave_chunks = grouper(buffer_length, scaled_wave, 0) out_nap = [] out_strobes = [] for chunk in wave_chunks: i = 0 for sample in chunk: input_sig.set_sample(0, i, float(sample)) i += 1 mod_gt.Process(input_sig) out_nap.append(BankToArray(mod_hl.GetOutputBank())) out_strobes.append(StrobesToList(mod_strobes.GetOutputBank())) outmat = dict(nap=out_nap, strobes=out_strobes) io.savemat("src/Scripts/strobes_out.mat", outmat, oned_as='column') pass if __name__ == '__main__': main()