Mercurial > hg > aimc
view experiments/scripts/master.sh @ 169:78cbca1cf218
- AWS fixes (part 1)
author | tomwalters |
---|---|
date | Wed, 11 Aug 2010 08:55:29 +0000 |
parents | f75123cf39ce |
children | df9b49dba8fa |
line wrap: on
line source
#!/bin/bash # Copyright 2010 Thomas Walters <tom@acousticscale.org> # # Run a series of experiments which compare MFCC features generated by HTK to # AIM features generated using AIM-C using a series of syllable recogntiton # tasks. # This script expects the HTK binaries and AIM-C AIMCopy binary to be present # in the PATH. # Set these to be the location of your input database, and desired output # locations. SYLLABLES_DATABASE_TAR=/media/sounds/cnbh-syllables.tar SOUNDS_ROOT=/mnt/experiments/sounds/ FEATURES_ROOT=/mnt/experiments/features/ HMMS_ROOT=/mnt/experiments/hmms/ # Number of cores on the experimental machine. Various scripts will try to use # this if it's set. NUMBER_OF_CORES=2 # Fail if any command fails set -e # Fail if any variable is unset set -u if [ ! -d $SOUNDS_ROOT ]; then sudo mkdir -p $SOUNDS_ROOT sudo chown `whoami` $SOUNDS_ROOT fi # Untar the CNBH syllables database, and convert the files from FLAC to WAV if [ ! -e $SOUNDS_ROOT/.untar_db_success ]; then tar -x -C $SOUNDS_ROOT -f $SYLLABLES_DATABASE_TAR touch $SOUNDS_ROOT/.untar_db_success fi # Convert the database to .WAV format and place it in $SOUNDS_ROOT/clean ./cnbh-syllables/convert_flac_to_wave.sh $SOUNDS_ROOT # Generate versions of the CNBH syllables spoke pattern with a range of # signal-to-noise ratios (SNRs). The versions are put in the directory # ${SOUNDS_ROOT}/${SNR}_dB/ for each SNR in $SNRS. SNRS="30 27 24 21 18 15 12 9 6 3 0" ./cnbh-syllables/pink_noise.sh $SOUNDS_ROOT/clean/ $SNRS # Make the list of all feature drectories FEATURE_DIRS="clean" for SNR in $SNRS; do FEATURE_DIRS="$FEATURE_DIRS snr_${SNR}dB" done # Generate feature sets (for the full range of SNRs in $FEATURE_DIRS) # 1. Standard MFCC features # 2. AIM features # 3. MFCC features with optimal VTLN if [ ! -d $FEATURES_ROOT ]; then sudo mkdir -p $FEATURES_ROOT sudo chown `whoami` $FEATURES_ROOT fi for SOURCE_SNR in $FEATURE_DIRS; do if [ ! -e $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success] then mkdir -p $FEATURES_ROOT/mfcc/$SOURCE_SNR/ # Generate the list of files to convert ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ # Run the conversion ./cnbh-syllables/feature_generation/run_hcopy.sh $FEATURES_ROOT/mfcc/$SOURCE_SNR/ $NUMBER_OF_CORES touch $FEATURES_ROOT/mfcc/$SOURCE_SNR/.make_mfcc_features_success done if [ ! -e $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success] then mkdir -p $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ # Generate the file list and run the conversion (all one step, since this # version uses a different configuraiton for each talker) ./cnbh-syllables/feature_generation/run_mfcc_vtln_conversion.sh $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ touch $FEATURES_ROOT/mfcc_vtln/$SOURCE_SNR/.make_mfcc_vtln_features_success done if [ ! -e $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success] then mkdir -p $FEATURES_ROOT/aim/$SOURCE_SNR/ ./cnbh-syllables/feature_generation/gen_hcopy_aimcopy_script.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $SOUNDS_ROOT/$SOURCE_SNR/ # Run the conversion ./cnbh-syllables/feature_generation/run_aimcopy.sh $FEATURES_ROOT/aim/$SOURCE_SNR/ $NUMBER_OF_CORES touch $FEATURES_ROOT/aim/$SOURCE_SNR/.make_aim_features_success done done # Now run a bunch of experiments. # For each of the feature types, we want to run HMMs with a bunch of # parameters. TRAINING_ITERATIONS="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20" TESTING_ITERATIONS="1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20" HMM_STATES="3 4 5 6 7 8" HMM_OUTPUT_COMPONENTS=""