Mercurial > hg > aimc
view trunk/src/Modules/BMM/ModulePZFC.cc @ 690:76f749d29b48
Fix memory leak in CARFAC.
Also get rid of most uses of auto, which tend to hurt readability
unless the type name is particularly long, especially when it masks
pointers.
author | ronw@google.com |
---|---|
date | Tue, 11 Jun 2013 21:41:53 +0000 |
parents | 99f9bf0f7798 |
children |
line wrap: on
line source
// Copyright 2008-2010, Thomas Walters // // AIM-C: A C++ implementation of the Auditory Image Model // http://www.acousticscale.org/AIMC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /*! \file * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code */ /*! \author Thomas Walters <tom@acousticscale.org> * \date created 2008/02/05 * \version \$Id$ */ #include "Support/ERBTools.h" #include "Modules/BMM/ModulePZFC.h" namespace aimc { ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) { module_identifier_ = "pzfc"; module_type_ = "bmm"; module_description_ = "Pole-Zero Filter Cascade"; module_version_ = "$Id$"; // Get parameter values, setting default values where necessary // Each parameter is set here only if it has not already been set elsewhere. cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f); cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f); pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f); zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f); zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f); step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f); bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf", 0.11f); min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz", 27.0f); agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f); do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true); use_fitted_parameters_ = parameters_->DefaultBool("pzfc.use_fit", false); detect_.resize(0); } ModulePZFC::~ModulePZFC() { } bool ModulePZFC::InitializeInternal(const SignalBank &input) { // Make local convenience copies of some variables sample_rate_ = input.sample_rate(); buffer_length_ = input.buffer_length(); channel_count_ = 0; // Prepare the coefficients and also the output SignalBank if (!SetPZBankCoeffs()) return false; // The output signal bank should be set up by now. if (!output_.initialized()) return false; // This initialises all buffers which can be modified by Process() ResetInternal(); return true; } void ModulePZFC::ResetInternal() { // These buffers may be actively modified by the algorithm agc_state_.clear(); agc_state_.resize(channel_count_); for (int i = 0; i < channel_count_; ++i) { agc_state_[i].clear(); agc_state_[i].resize(agc_stage_count_, 0.0f); } state_1_.clear(); state_1_.resize(channel_count_, 0.0f); state_2_.clear(); state_2_.resize(channel_count_, 0.0f); previous_out_.clear(); previous_out_.resize(channel_count_, 0.0f); pole_damps_mod_.clear(); pole_damps_mod_.resize(channel_count_, 0.0f); inputs_.clear(); inputs_.resize(channel_count_, 0.0f); // Init AGC AGCDampStep(); // pole_damps_mod_ and agc_state_ are now be initialized // Modify the pole dampings and AGC state slightly from their values in // silence in case the input is abuptly loud. for (int i = 0; i < channel_count_; ++i) { pole_damps_mod_[i] += 0.05f; for (int j = 0; j < agc_stage_count_; ++j) agc_state_[i][j] += 0.05f; } last_input_ = 0.0f; } bool ModulePZFC::SetPZBankCoeffsOrig() { // This function sets the following variables: // channel_count_ // pole_dampings_ // pole_frequencies_ // za0_, za1_, za2 // output_ // TODO(tomwalters): There's significant code-duplication between this function // and SetPZBankCoeffsERBFitted, and SetPZBankCoeffs // Normalised maximum pole frequency float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); channel_count_ = 0; while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) { float bw = bandwidth_over_cf_ * pole_frequency + 2 * M_PI * min_bandwidth_hz_ / sample_rate_; pole_frequency -= step_factor_ * bw; channel_count_++; } // Now the number of channels is known, various buffers for the filterbank // coefficients can be initialised pole_dampings_.clear(); pole_dampings_.resize(channel_count_, pole_damping_); pole_frequencies_.clear(); pole_frequencies_.resize(channel_count_, 0.0f); // Direct-form coefficients za0_.clear(); za0_.resize(channel_count_, 0.0f); za1_.clear(); za1_.resize(channel_count_, 0.0f); za2_.clear(); za2_.resize(channel_count_, 0.0f); // The output signal bank output_.Initialize(channel_count_, buffer_length_, sample_rate_); // Reset the pole frequency to maximum pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); for (int i = channel_count_ - 1; i > -1; --i) { // Store the normalised pole frequncy pole_frequencies_[i] = pole_frequency; // Calculate the real pole frequency from the normalised pole frequency float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; // Store the real pole frequency as the 'centre frequency' of the filterbank // channel output_.set_centre_frequency(i, frequency); float zero_frequency = Minimum(M_PI, zero_factor_ * pole_frequency); // Impulse-invariance mapping float z_plane_theta = zero_frequency * sqrt(1.0f - pow(zero_damping_, 2)); float z_plane_rho = exp(-zero_damping_ * zero_frequency); // Direct-form coefficients from z-plane rho and theta float a1 = -2.0f * z_plane_rho * cos(z_plane_theta); float a2 = z_plane_rho * z_plane_rho; // Normalised to unity gain at DC float a_sum = 1.0f + a1 + a2; za0_[i] = 1.0f / a_sum; za1_[i] = a1 / a_sum; za2_[i] = a2 / a_sum; // Subtract step factor (1/n2) times current bandwidth from the pole // frequency float bw = bandwidth_over_cf_ * pole_frequency + 2 * M_PI * min_bandwidth_hz_ / sample_rate_; pole_frequency -= step_factor_ * bw; } return true; } bool ModulePZFC::SetPZBankCoeffsERB() { // This function sets the following variables: // channel_count_ // pole_dampings_ // pole_frequencies_ // za0_, za1_, za2 // output_ // TODO(tomwalters): There's significant code-duplication between here, // SetPZBankCoeffsERBFitted, and SetPZBankCoeffs // Normalised maximum pole frequency float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); channel_count_ = 0; while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) { float bw = ERBTools::Freq2ERBw(pole_frequency / (2.0f * M_PI) * sample_rate_); pole_frequency -= step_factor_ * (bw * (2.0f * M_PI) / sample_rate_); channel_count_++; } // Now the number of channels is known, various buffers for the filterbank // coefficients can be initialised pole_dampings_.clear(); pole_dampings_.resize(channel_count_, pole_damping_); pole_frequencies_.clear(); pole_frequencies_.resize(channel_count_, 0.0f); // Direct-form coefficients za0_.clear(); za0_.resize(channel_count_, 0.0f); za1_.clear(); za1_.resize(channel_count_, 0.0f); za2_.clear(); za2_.resize(channel_count_, 0.0f); // The output signal bank output_.Initialize(channel_count_, buffer_length_, sample_rate_); // Reset the pole frequency to maximum pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); for (int i = channel_count_ - 1; i > -1; --i) { // Store the normalised pole frequncy pole_frequencies_[i] = pole_frequency; // Calculate the real pole frequency from the normalised pole frequency float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; // Store the real pole frequency as the 'centre frequency' of the filterbank // channel output_.set_centre_frequency(i, frequency); float zero_frequency = Minimum(M_PI, zero_factor_ * pole_frequency); // Impulse-invariance mapping float z_plane_theta = zero_frequency * sqrt(1.0f - pow(zero_damping_, 2)); float z_plane_rho = exp(-zero_damping_ * zero_frequency); // Direct-form coefficients from z-plane rho and theta float a1 = -2.0f * z_plane_rho * cos(z_plane_theta); float a2 = z_plane_rho * z_plane_rho; // Normalised to unity gain at DC float a_sum = 1.0f + a1 + a2; za0_[i] = 1.0f / a_sum; za1_[i] = a1 / a_sum; za2_[i] = a2 / a_sum; float bw = ERBTools::Freq2ERBw(pole_frequency / (2.0f * M_PI) * sample_rate_); pole_frequency -= step_factor_ * (bw * (2.0f * M_PI) / sample_rate_); } return true; } bool ModulePZFC::SetPZBankCoeffsERBFitted() { //float parameter_values[3 * 7] = { //// Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec //1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41 //0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586 //0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000 //// Inf 0.00000 0.00000 % RMSCost = NaN //0.00000, 0.00000, 0.00000, //6.00000, 0.00000, 0.00000, //1.08869, -0.09470, 0.07844, //10.56432, 2.52732, 1.86895 //// -3.45865 -1.31457 3.91779 % Kv //}; float parameter_values[3 * 7] = { // Fit 515 from Dick // Final, Nfit = 515, 9-3 parameters, PZFC, cwt 0 1.72861, 0.00000, 0.00000, // SumSqrErr = 13622.24 0.56657, -0.93911, 0.89163, // RMSErr = 3.26610 0.39469, 0.00000, 0.00000, // MeanErr = 0.00000 // Inf, 0.00000, 0.00000, // RMSCost = NaN - would set coefc to infinity, but this isn't passed on 0.00000, 0.00000, 0.00000, 2.00000, 0.00000, 0.00000, // 1.27393, 0.00000, 0.00000, 11.46247, 5.46894, 0.11800 // -4.15525, 1.54874, 2.99858 // Kv }; // Precalculate the number of channels required - this method is ugly but it // was the quickest way of converting from MATLAB as the step factor between // channels can vary quadratically with pole frequency... // Normalised maximum pole frequency float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); channel_count_ = 0; while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) { float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; float f_dep = ERBTools::Freq2ERB(frequency) / ERBTools::Freq2ERB(1000.0f) - 1.0f; float bw = ERBTools::Freq2ERBw(pole_frequency / (2.0f * M_PI) * sample_rate_); float step_factor = 1.0f / (parameter_values[4*3] + parameter_values[4 * 3 + 1] * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2 pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_); channel_count_++; } // Now the number of channels is known, various buffers for the filterbank // coefficients can be initialised pole_dampings_.clear(); pole_dampings_.resize(channel_count_, 0.0f); pole_frequencies_.clear(); pole_frequencies_.resize(channel_count_, 0.0f); // Direct-form coefficients za0_.clear(); za0_.resize(channel_count_, 0.0f); za1_.clear(); za1_.resize(channel_count_, 0.0f); za2_.clear(); za2_.resize(channel_count_, 0.0f); // The output signal bank output_.Initialize(channel_count_, buffer_length_, sample_rate_); // Reset the pole frequency to maximum pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI); for (int i = channel_count_ - 1; i > -1; --i) { // Store the normalised pole frequncy pole_frequencies_[i] = pole_frequency; // Calculate the real pole frequency from the normalised pole frequency float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_; // Store the real pole frequency as the 'centre frequency' of the filterbank // channel output_.set_centre_frequency(i, frequency); // From PZFC_Small_Signal_Params.m { From PZFC_Params.m { float DpndF = ERBTools::Freq2ERB(frequency) / ERBTools::Freq2ERB(1000.0f) - 1.0f; float p[8]; // Parameters (short name for ease of reading) // Use parameter_values to recover the parameter values for this frequency for (int param = 0; param < 7; ++param) p[param] = parameter_values[param * 3] + parameter_values[param * 3 + 1] * DpndF + parameter_values[param * 3 + 2] * DpndF * DpndF; // Calculate the final parameter p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f); if (p[7] < 0.2f) p[7] = 0.2f; // Nominal bandwidth at this frequency float fERBw = ERBTools::Freq2ERBw(frequency); // Pole bandwidth float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2) * pow(p[4], 0.5f); // Pole damping float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2)); // Store the pole damping pole_dampings_[i] = pole_damping; // Zero bandwidth float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2) * pow(p[4], 0.5f); // Zero frequency float zero_frequency = p[5] * pole_frequency; if (zero_frequency > M_PI) LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency " "in ModulePZFC(), continuing anyway but results may not " "be accurate.")); // Zero damping float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2)); // Impulse-invariance mapping float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2)); float fZRho = exp(-fZDamp * zero_frequency); // Direct-form coefficients float fA1 = -2.0f * fZRho * cos(fZTheta); float fA2 = fZRho * fZRho; // Normalised to unity gain at DC float fASum = 1.0f + fA1 + fA2; za0_[i] = 1.0f / fASum; za1_[i] = fA1 / fASum; za2_[i] = fA2 / fASum; // Subtract step factor (1/n2) times current bandwidth from the pole // frequency pole_frequency -= ((1.0f / p[4]) * (fERBw * (2.0f * M_PI) / sample_rate_)); } return true; } bool ModulePZFC::SetPZBankCoeffs() { /*! \todo Re-implement the alternative parameter settings */ if (use_fitted_parameters_) { if (!SetPZBankCoeffsERBFitted()) return false; } else { if (!SetPZBankCoeffsOrig()) return false; } /*! \todo Make fMindamp and fMaxdamp user-settable? */ mindamp_ = 0.18f; maxdamp_ = 0.4f; rmin_.resize(channel_count_); rmax_.resize(channel_count_); xmin_.resize(channel_count_); xmax_.resize(channel_count_); for (int c = 0; c < channel_count_; ++c) { // Calculate maximum and minimum damping options rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]); rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]); xmin_[c] = rmin_[c] * cos(pole_frequencies_[c] * pow((1-pow(mindamp_, 2)), 0.5f)); xmax_[c] = rmax_[c] * cos(pole_frequencies_[c] * pow((1-pow(maxdamp_, 2)), 0.5f)); } // Set up AGC parameters agc_stage_count_ = 4; agc_epsilons_.resize(agc_stage_count_); agc_epsilons_[0] = 0.0064f; agc_epsilons_[1] = 0.0016f; agc_epsilons_[2] = 0.0004f; agc_epsilons_[3] = 0.0001f; agc_gains_.resize(agc_stage_count_); agc_gains_[0] = 1.0f; agc_gains_[1] = 1.4f; agc_gains_[2] = 2.0f; agc_gains_[3] = 2.8f; float mean_agc_gain = 0.0f; for (int c = 0; c < agc_stage_count_; ++c) mean_agc_gain += agc_gains_[c]; mean_agc_gain /= static_cast<float>(agc_stage_count_); for (int c = 0; c < agc_stage_count_; ++c) agc_gains_[c] /= mean_agc_gain; return true; } void ModulePZFC::AGCDampStep() { if (detect_.size() == 0) { // If detect_ is not initialised, it means that the AGC is not set up. // Set up now. /*! \todo Make a separate InitAGC function which does this. */ detect_.clear(); float detect_zero = DetectFun(0.0f); detect_.resize(channel_count_, detect_zero); for (int c = 0; c < channel_count_; c++) for (int st = 0; st < agc_stage_count_; st++) agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]); } float fAGCEpsLeft = 0.3f; float fAGCEpsRight = 0.3f; for (int c = channel_count_ - 1; c > -1; --c) { for (int st = 0; st < agc_stage_count_; ++st) { // This bounds checking is ugly and wasteful, and in an inner loop. // If this algorithm is slow, this is why! /*! \todo Proper non-ugly bounds checking in AGCDampStep() */ float fPrevAGCState; float fCurrAGCState; float fNextAGCState; if (c < channel_count_ - 1) fPrevAGCState = agc_state_[c + 1][st]; else fPrevAGCState = agc_state_[c][st]; fCurrAGCState = agc_state_[c][st]; if (c > 0) fNextAGCState = agc_state_[c - 1][st]; else fNextAGCState = agc_state_[c][st]; // Spatial smoothing /*! \todo Something odd is going on here * I think this line is not quite right. */ float agc_avg = fAGCEpsLeft * fPrevAGCState + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState + fAGCEpsRight * fNextAGCState; // Temporal smoothing agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st]) + agc_epsilons_[st] * detect_[c] * agc_gains_[st]; } } float offset = 1.0f - agc_factor_ * DetectFun(0.0f); for (int i = 0; i < channel_count_; ++i) { float fAGCStateMean = 0.0f; for (int j = 0; j < agc_stage_count_; ++j) fAGCStateMean += agc_state_[i][j]; fAGCStateMean /= static_cast<float>(agc_stage_count_); pole_damps_mod_[i] = pole_dampings_[i] * (offset + agc_factor_ * fAGCStateMean); } } float ModulePZFC::DetectFun(float fIN) { if (fIN < 0.0f) fIN = 0.0f; float fDetect = Minimum(1.0f, fIN); float fA = 0.25f; return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f); } inline float ModulePZFC::Minimum(float a, float b) { if (a < b) return a; else return b; } void ModulePZFC::Process(const SignalBank& input) { // Set the start time of the output buffer output_.set_start_time(input.start_time()); for (int s = 0; s < input.buffer_length(); ++s) { float input_sample = input.sample(0, s); // Lowpass filter the input with a zero at PI input_sample = 0.5f * input_sample + 0.5f * last_input_; last_input_ = input.sample(0, s); inputs_[channel_count_ - 1] = input_sample; for (int c = 0; c < channel_count_ - 1; ++c) inputs_[c] = previous_out_[c + 1]; // PZBankStep2 // to save a bunch of divides float damp_rate = 1.0f / (maxdamp_ - mindamp_); for (int c = channel_count_ - 1; c > -1; --c) { float interp_factor = (pole_damps_mod_[c] - mindamp_) * damp_rate; float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor; float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor; // optional improvement to constellation adds a bit to r float fd = pole_frequencies_[c] * pole_damps_mod_[c]; // quadratic for small values, then linear r = r + 0.25f * fd * Minimum(0.05f, fd); float zb1 = -2.0f * x; float zb2 = r * r; /* canonic poles but with input provided where unity DC gain is assured * (mean value of state is always equal to mean value of input) */ float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1 - (state_2_[c] - inputs_[c]) * zb2; // canonic zeros part as before: float output = za0_[c] * new_state + za1_[c] * state_1_[c] + za2_[c] * state_2_[c]; // cubic compression nonlinearity output -= 0.0001f * pow(output, 3); output_.set_sample(c, s, output); detect_[c] = DetectFun(output); state_2_[c] = state_1_[c]; state_1_[c] = new_state; } if (do_agc_step_) AGCDampStep(); for (int c = 0; c < channel_count_; ++c) previous_out_[c] = output_[c][s]; } PushOutput(); } } // namespace aimc