Mercurial > hg > aimc
view trunk/carfac/ear.h @ 690:76f749d29b48
Fix memory leak in CARFAC.
Also get rid of most uses of auto, which tend to hurt readability
unless the type name is particularly long, especially when it masks
pointers.
author | ronw@google.com |
---|---|
date | Tue, 11 Jun 2013 21:41:53 +0000 |
parents | bcb0c53a2fc5 |
children | 2d432ff51f64 |
line wrap: on
line source
// // ear.h // CARFAC Open Source C++ Library // // Created by Alex Brandmeyer on 5/10/13. // // This C++ file is part of an implementation of Lyon's cochlear model: // "Cascade of Asymmetric Resonators with Fast-Acting Compression" // to supplement Lyon's upcoming book "Human and Machine Hearing" // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef CARFAC_EAR_H #define CARFAC_EAR_H #include <vector> #include "agc.h" #include "car.h" #include "common.h" #include "ihc.h" // The Ear object carries out the three steps of the CARFAC model on a single // channel of audio data, and stores information about the CAR, IHC and AGC // filter coefficients and states. class Ear { public: Ear(const int num_channels, const CARCoeffs& car_coeffs, const IHCCoeffs& ihc_coeffs, const std::vector<AGCCoeffs>& agc_coeffs); void Reset(const int num_channels, const CARCoeffs& car_coeffs, const IHCCoeffs& ihc_coeffs, const std::vector<AGCCoeffs>& agc_coeffs); // These three methods apply the different steps of the model in sequence // to individual audio samples during the call to CARFAC::RunSegment. void CARStep(const FPType input); // TODO(ronw): Consider changing the interface for the following two // methods to access the internal state members directly instead of // requiring callers to confusingly have to call an accessor method // just to pass internal data back into the same object as in: // ear.IHCStep(ear.car_out()); void IHCStep(const ArrayX& car_out); bool AGCStep(const ArrayX& ihc_out); // These accessor functions return portions of the CAR state for storage in // the CAROutput structures. const ArrayX& za_memory() const { return car_state_.za_memory; } const ArrayX& zb_memory() const { return car_state_.zb_memory; } // The zy_memory_ of the CARState is equivalent to the CAR output. A second // accessor function is included for documentation purposes. const ArrayX& zy_memory() const { return car_state_.zy_memory; } const ArrayX& car_out() const { return car_state_.zy_memory; } const ArrayX& g_memory() const { return car_state_.g_memory; } const ArrayX& ihc_out() const { return ihc_state_.ihc_out; } const ArrayX& dzb_memory() const { return car_state_.dzb_memory; } const ArrayX& zr_coeffs() const { return car_coeffs_.zr_coeffs; } // These accessor functions return portions of the AGC state during the cross // coupling of the ears. const int agc_num_stages() const { return agc_coeffs_.size(); } const int agc_decim_phase(const int stage) const { return agc_state_[stage].decim_phase; } const FPType agc_mix_coeff(const int stage) const { return agc_coeffs_[stage].agc_mix_coeffs; } const ArrayX& agc_memory(const int stage) const { return agc_state_[stage].agc_memory; } const int agc_decimation(const int stage) const { return agc_coeffs_[stage].decimation; } // Returns the stage G value during the closing of the AGC loop. ArrayX StageGValue(const ArrayX& undamping) const; // Sets the AGC memory during the cross coupling stage. void set_agc_memory(const int stage, const ArrayX& new_values) { agc_state_[stage].agc_memory = new_values; } // Setter functions for the CAR memory states. void set_dzb_memory(const ArrayX& new_values) { car_state_.dzb_memory = new_values; } void set_dg_memory(const ArrayX& new_values) { car_state_.dg_memory = new_values; } private: // Initializes the model state variables prior to runtime. void ResetIHCState(); void ResetAGCState(); void ResetCARState(); // Helper sub-functions called during the model runtime. void OHCNonlinearFunction(const ArrayX& velocities, ArrayX* nonlinear_fun) const; bool AGCRecurse(const int stage, ArrayX agc_in); void AGCSpatialSmooth(const AGCCoeffs& agc_coeffs, ArrayX* stage_state) const; void AGCSmoothDoubleExponential(const FPType pole_z1, const FPType pole_z2, ArrayX* stage_state) const; CARCoeffs car_coeffs_; CARState car_state_; IHCCoeffs ihc_coeffs_; IHCState ihc_state_; // The AGC coefficient and state variables are both stored in vectors // containing one element for each stage (default = 4). std::vector<AGCCoeffs> agc_coeffs_; std::vector<AGCState> agc_state_; int num_channels_; DISALLOW_COPY_AND_ASSIGN(Ear); }; #endif // CARFAC_EAR_H