view src/Modules/BMM/ModulePZFC.cc @ 121:3cdaa81c3aca

- Massive refactoring to make module tree stuff work. In theory we now support configuration files again. The graphics stuff is untested as yet.
author tomwalters
date Mon, 18 Oct 2010 04:42:28 +0000
parents c5ac2f0c7fc5
children f03d4455b262
line wrap: on
line source
// Copyright 2008-2010, Thomas Walters
//
// AIM-C: A C++ implementation of the Auditory Image Model
// http://www.acousticscale.org/AIMC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*! \file
 *  \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C
 *  module by Tom Walters from the AIM-MAT module based on Dick Lyon's code
 */

/*! \author Thomas Walters <tom@acousticscale.org>
 *  \date created 2008/02/05
 *  \version \$Id$
 */

#include "Support/ERBTools.h"

#include "Modules/BMM/ModulePZFC.h"

namespace aimc {
ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) {
  module_identifier_ = "pzfc";
  module_type_ = "bmm";
  module_description_ = "Pole-Zero Filter Cascade";
  module_version_ = "$Id$";

  // Get parameter values, setting default values where necessary
  // Each parameter is set here only if it has not already been set elsewhere.
  cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f);
  cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f);
  pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f);
  zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f);
  zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f);
  step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f);
  bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf",
                                                 0.11f);
  min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz",
                                                27.0f);
  agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f);
  do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true);
  use_fitted_parameters_ = parameters_->DefaultBool("pzfc.use_fit", false);

  detect_.resize(0);
}

ModulePZFC::~ModulePZFC() {
}

bool ModulePZFC::InitializeInternal(const SignalBank &input) {
  // Make local convenience copies of some variables
  sample_rate_ = input.sample_rate();
  buffer_length_ = input.buffer_length();
  channel_count_ = 0;

  // Prepare the coefficients and also the output SignalBank
  if (!SetPZBankCoeffs())
    return false;

  // The output signal bank should be set up by now.
  if (!output_.initialized())
    return false;

  // This initialises all buffers which can be modified by Process()
  ResetInternal();

  return true;
}

void ModulePZFC::ResetInternal() {
  // These buffers may be actively modified by the algorithm
  agc_state_.clear();
  agc_state_.resize(channel_count_);
  for (int i = 0; i < channel_count_; ++i) {
    agc_state_[i].clear();
    agc_state_[i].resize(agc_stage_count_, 0.0f);
  }

  state_1_.clear();
  state_1_.resize(channel_count_, 0.0f);

  state_2_.clear();
  state_2_.resize(channel_count_, 0.0f);

  previous_out_.clear();
  previous_out_.resize(channel_count_, 0.0f);

  pole_damps_mod_.clear();
  pole_damps_mod_.resize(channel_count_, 0.0f);

  inputs_.clear();
  inputs_.resize(channel_count_, 0.0f);

  // Init AGC
  AGCDampStep();
  // pole_damps_mod_ and agc_state_ are now be initialized

  // Modify the pole dampings and AGC state slightly from their values in
  // silence in case the input is abuptly loud.
  for (int i = 0; i < channel_count_; ++i) {
    pole_damps_mod_[i] += 0.05f;
    for (int j = 0; j < agc_stage_count_; ++j)
      agc_state_[i][j] += 0.05f;
  }

  last_input_ = 0.0f;
}

bool ModulePZFC::SetPZBankCoeffsOrig() {
  // This function sets the following variables:
  // channel_count_
  // pole_dampings_
  // pole_frequencies_
  // za0_, za1_, za2
  // output_
  
  // TODO(tomwalters): There's significant code-duplication between this function
  // and SetPZBankCoeffsERBFitted, and SetPZBankCoeffs
  
  // Normalised maximum pole frequency
  float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
  channel_count_ = 0;
  while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
  float bw = bandwidth_over_cf_ * pole_frequency + 2 * M_PI * min_bandwidth_hz_ / sample_rate_;
    pole_frequency -= step_factor_ * bw;
    channel_count_++;
  }
  
  // Now the number of channels is known, various buffers for the filterbank
  // coefficients can be initialised
  pole_dampings_.clear();
  pole_dampings_.resize(channel_count_, pole_damping_);
  pole_frequencies_.clear();
  pole_frequencies_.resize(channel_count_, 0.0f);

  // Direct-form coefficients
  za0_.clear();
  za0_.resize(channel_count_, 0.0f);
  za1_.clear();
  za1_.resize(channel_count_, 0.0f);
  za2_.clear();
  za2_.resize(channel_count_, 0.0f);

  // The output signal bank
  output_.Initialize(channel_count_, buffer_length_, sample_rate_);
  
  // Reset the pole frequency to maximum
  pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);

  for (int i = channel_count_ - 1; i > -1; --i) {
    // Store the normalised pole frequncy
    pole_frequencies_[i] = pole_frequency;

    // Calculate the real pole frequency from the normalised pole frequency
    float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;

    // Store the real pole frequency as the 'centre frequency' of the filterbank
    // channel
    output_.set_centre_frequency(i, frequency);

  float zero_frequency = Minimum(M_PI, zero_factor_ * pole_frequency);

    // Impulse-invariance mapping
    float z_plane_theta = zero_frequency * sqrt(1.0f - pow(zero_damping_, 2));
    float z_plane_rho = exp(-zero_damping_ * zero_frequency);

    // Direct-form coefficients from z-plane rho and theta
    float a1 = -2.0f * z_plane_rho * cos(z_plane_theta);
    float a2 = z_plane_rho * z_plane_rho;

    // Normalised to unity gain at DC
    float a_sum = 1.0f + a1 + a2;
    za0_[i] = 1.0f / a_sum;
    za1_[i] = a1 / a_sum;
    za2_[i] = a2 / a_sum;

    // Subtract step factor (1/n2) times current bandwidth from the pole
    // frequency
  float bw = bandwidth_over_cf_ * pole_frequency + 2 * M_PI * min_bandwidth_hz_ / sample_rate_;
    pole_frequency -= step_factor_ * bw;
  }
  return true;
}


bool ModulePZFC::SetPZBankCoeffsERB() {
  // This function sets the following variables:
  // channel_count_
  // pole_dampings_
  // pole_frequencies_
  // za0_, za1_, za2
  // output_
  
  // TODO(tomwalters): There's significant code-duplication between here,
  // SetPZBankCoeffsERBFitted, and SetPZBankCoeffs
  
  // Normalised maximum pole frequency
  float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
  channel_count_ = 0;
  while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
    float bw = ERBTools::Freq2ERBw(pole_frequency
                                  / (2.0f * M_PI) * sample_rate_);
    pole_frequency -= step_factor_ * (bw * (2.0f * M_PI) / sample_rate_);
    channel_count_++;
  }
  
  // Now the number of channels is known, various buffers for the filterbank
  // coefficients can be initialised
  pole_dampings_.clear();
  pole_dampings_.resize(channel_count_, pole_damping_);
  pole_frequencies_.clear();
  pole_frequencies_.resize(channel_count_, 0.0f);

  // Direct-form coefficients
  za0_.clear();
  za0_.resize(channel_count_, 0.0f);
  za1_.clear();
  za1_.resize(channel_count_, 0.0f);
  za2_.clear();
  za2_.resize(channel_count_, 0.0f);

  // The output signal bank
  output_.Initialize(channel_count_, buffer_length_, sample_rate_);
  
  // Reset the pole frequency to maximum
  pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);

  for (int i = channel_count_ - 1; i > -1; --i) {
    // Store the normalised pole frequncy
    pole_frequencies_[i] = pole_frequency;

    // Calculate the real pole frequency from the normalised pole frequency
    float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;

    // Store the real pole frequency as the 'centre frequency' of the filterbank
    // channel
    output_.set_centre_frequency(i, frequency);

  float zero_frequency = Minimum(M_PI, zero_factor_ * pole_frequency);

    // Impulse-invariance mapping
    float z_plane_theta = zero_frequency * sqrt(1.0f - pow(zero_damping_, 2));
    float z_plane_rho = exp(-zero_damping_ * zero_frequency);

    // Direct-form coefficients from z-plane rho and theta
    float a1 = -2.0f * z_plane_rho * cos(z_plane_theta);
    float a2 = z_plane_rho * z_plane_rho;

    // Normalised to unity gain at DC
    float a_sum = 1.0f + a1 + a2;
    za0_[i] = 1.0f / a_sum;
    za1_[i] = a1 / a_sum;
    za2_[i] = a2 / a_sum;

    float bw = ERBTools::Freq2ERBw(pole_frequency
                                  / (2.0f * M_PI) * sample_rate_);
    pole_frequency -= step_factor_ * (bw * (2.0f * M_PI) / sample_rate_);
  }
  return true;
}

bool ModulePZFC::SetPZBankCoeffsERBFitted() {
  //float parameter_values[3 * 7] = {
    //// Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec
    //1.14827,   0.00000,   0.00000,  // % SumSqrErr=  10125.41
    //0.53571,  -0.70128,   0.63246,  // % RMSErr   =   2.81586
    //0.76779,   0.00000,   0.00000,  // % MeanErr  =   0.00000
    //// Inf   0.00000   0.00000 % RMSCost  = NaN
    //0.00000,   0.00000,   0.00000,
    //6.00000,   0.00000,   0.00000,
    //1.08869,  -0.09470,   0.07844,
    //10.56432,   2.52732,   1.86895
    //// -3.45865  -1.31457   3.91779 % Kv
  //};
  
  float parameter_values[3 * 7] = {
  // Fit 515 from Dick
  // Final, Nfit = 515, 9-3 parameters, PZFC, cwt 0
     1.72861,   0.00000,   0.00000,  // SumSqrErr =  13622.24
     0.56657,  -0.93911,   0.89163,  // RMSErr    =  3.26610
     0.39469,   0.00000,   0.00000,  // MeanErr   =  0.00000
  // Inf,       0.00000,   0.00000,  // RMSCost   =  NaN - would set coefc to infinity, but this isn't passed on
     0.00000,   0.00000,   0.00000,
     2.00000,   0.00000,   0.00000,  //
     1.27393,   0.00000,   0.00000,
    11.46247,  5.46894,   0.11800
  // -4.15525,  1.54874,   2.99858   // Kv
  };

  // Precalculate the number of channels required - this method is ugly but it
  // was the quickest way of converting from MATLAB as the step factor between
  // channels can vary quadratically with pole frequency...

  // Normalised maximum pole frequency
  float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);

  channel_count_ = 0;
  while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
    float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
    float f_dep = ERBTools::Freq2ERB(frequency)
                  / ERBTools::Freq2ERB(1000.0f) - 1.0f;
    float bw = ERBTools::Freq2ERBw(pole_frequency
                                  / (2.0f * M_PI) * sample_rate_);
    float step_factor = 1.0f
      / (parameter_values[4*3] + parameter_values[4 * 3 + 1]
      * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep);  // 1/n2
    pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_);
    channel_count_++;
  }

  // Now the number of channels is known, various buffers for the filterbank
  // coefficients can be initialised
  pole_dampings_.clear();
  pole_dampings_.resize(channel_count_, 0.0f);
  pole_frequencies_.clear();
  pole_frequencies_.resize(channel_count_, 0.0f);

  // Direct-form coefficients
  za0_.clear();
  za0_.resize(channel_count_, 0.0f);
  za1_.clear();
  za1_.resize(channel_count_, 0.0f);
  za2_.clear();
  za2_.resize(channel_count_, 0.0f);

  // The output signal bank
  output_.Initialize(channel_count_, buffer_length_, sample_rate_);

  // Reset the pole frequency to maximum
  pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);

  for (int i = channel_count_ - 1; i > -1; --i) {
    // Store the normalised pole frequncy
    pole_frequencies_[i] = pole_frequency;

    // Calculate the real pole frequency from the normalised pole frequency
    float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;

    // Store the real pole frequency as the 'centre frequency' of the filterbank
    // channel
    output_.set_centre_frequency(i, frequency);

    // From PZFC_Small_Signal_Params.m { From PZFC_Params.m {
    float DpndF = ERBTools::Freq2ERB(frequency)
                  / ERBTools::Freq2ERB(1000.0f) - 1.0f;

    float p[8];  // Parameters (short name for ease of reading)

    // Use parameter_values to recover the parameter values for this frequency
    for (int param = 0; param < 7; ++param)
      p[param] = parameter_values[param * 3]
                 + parameter_values[param * 3 + 1] * DpndF
                 + parameter_values[param * 3 + 2] * DpndF * DpndF;

    // Calculate the final parameter
    p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f);
    if (p[7] < 0.2f)
      p[7] = 0.2f;

    // Nominal bandwidth at this frequency
    float fERBw = ERBTools::Freq2ERBw(frequency);

    // Pole bandwidth
    float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2)
                 * pow(p[4], 0.5f);

    // Pole damping
    float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2));

    // Store the pole damping
    pole_dampings_[i] = pole_damping;

    // Zero bandwidth
    float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2)
                 * pow(p[4], 0.5f);

    // Zero frequency
    float zero_frequency = p[5] * pole_frequency;

    if (zero_frequency > M_PI)
      LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency "
                   "in ModulePZFC(), continuing anyway but results may not "
                   "be accurate."));

    // Zero damping
    float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2));

    // Impulse-invariance mapping
    float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2));
    float fZRho = exp(-fZDamp * zero_frequency);

    // Direct-form coefficients
    float fA1 = -2.0f * fZRho * cos(fZTheta);
    float fA2 = fZRho * fZRho;

    // Normalised to unity gain at DC
    float fASum = 1.0f + fA1 + fA2;
    za0_[i] = 1.0f / fASum;
    za1_[i] = fA1 / fASum;
    za2_[i] = fA2 / fASum;

    // Subtract step factor (1/n2) times current bandwidth from the pole
    // frequency
    pole_frequency -= ((1.0f / p[4])
                       * (fERBw * (2.0f * M_PI) / sample_rate_));
  }
return true;
}

bool ModulePZFC::SetPZBankCoeffs() {
  /*! \todo Re-implement the alternative parameter settings
   */
  if (use_fitted_parameters_) {
    if (!SetPZBankCoeffsERBFitted())
      return false;
  } else {
    if (!SetPZBankCoeffsOrig())
    return false;
  }

  /*! \todo Make fMindamp and fMaxdamp user-settable?
   */
  mindamp_ = 0.18f;
  maxdamp_ = 0.4f;

  rmin_.resize(channel_count_);
  rmax_.resize(channel_count_);
  xmin_.resize(channel_count_);
  xmax_.resize(channel_count_);

  for (int c = 0; c < channel_count_; ++c) {
    // Calculate maximum and minimum damping options
    rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]);
    rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]);

    xmin_[c] = rmin_[c] * cos(pole_frequencies_[c]
                                      * pow((1-pow(mindamp_, 2)), 0.5f));
    xmax_[c] = rmax_[c] * cos(pole_frequencies_[c]
                                      * pow((1-pow(maxdamp_, 2)), 0.5f));
  }

  // Set up AGC parameters
  agc_stage_count_ = 4;
  agc_epsilons_.resize(agc_stage_count_);
  agc_epsilons_[0] = 0.0064f;
  agc_epsilons_[1] = 0.0016f;
  agc_epsilons_[2] = 0.0004f;
  agc_epsilons_[3] = 0.0001f;

  agc_gains_.resize(agc_stage_count_);
  agc_gains_[0] = 1.0f;
  agc_gains_[1] = 1.4f;
  agc_gains_[2] = 2.0f;
  agc_gains_[3] = 2.8f;

  float mean_agc_gain = 0.0f;
  for (int c = 0; c < agc_stage_count_; ++c)
    mean_agc_gain += agc_gains_[c];
  mean_agc_gain /= static_cast<float>(agc_stage_count_);

  for (int c = 0; c < agc_stage_count_; ++c)
    agc_gains_[c] /= mean_agc_gain;

  return true;
}

void ModulePZFC::AGCDampStep() {
  if (detect_.size() == 0) {
    // If  detect_ is not initialised, it means that the AGC is not set up.
    // Set up now.
    /*! \todo Make a separate InitAGC function which does this.
     */
    detect_.clear();
    float detect_zero = DetectFun(0.0f);
    detect_.resize(channel_count_, detect_zero);

    for (int c = 0; c < channel_count_; c++)
      for (int st = 0; st < agc_stage_count_; st++)
        agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]);
  }

  float fAGCEpsLeft = 0.3f;
  float fAGCEpsRight = 0.3f;

  for (int c = channel_count_ - 1; c > -1; --c) {
    for (int st = 0; st < agc_stage_count_; ++st) {
      // This bounds checking is ugly and wasteful, and in an inner loop.
      // If this algorithm is slow, this is why!
      /*! \todo Proper non-ugly bounds checking in AGCDampStep()
       */
      float fPrevAGCState;
      float fCurrAGCState;
      float fNextAGCState;

      if (c < channel_count_ - 1)
        fPrevAGCState = agc_state_[c + 1][st];
      else
        fPrevAGCState = agc_state_[c][st];

      fCurrAGCState = agc_state_[c][st];

      if (c > 0)
        fNextAGCState = agc_state_[c - 1][st];
      else
        fNextAGCState = agc_state_[c][st];

      // Spatial smoothing
      /*! \todo Something odd is going on here
       *  I think this line is not quite right.
       */
      float agc_avg = fAGCEpsLeft * fPrevAGCState
                      + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState
                      + fAGCEpsRight * fNextAGCState;
      // Temporal smoothing
      agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st])
                          + agc_epsilons_[st] * detect_[c] * agc_gains_[st];
    }
  }

  float offset = 1.0f - agc_factor_ * DetectFun(0.0f);

  for (int i = 0; i < channel_count_; ++i) {
    float fAGCStateMean = 0.0f;
    for (int j = 0; j < agc_stage_count_; ++j)
     fAGCStateMean += agc_state_[i][j];

    fAGCStateMean /= static_cast<float>(agc_stage_count_);

    pole_damps_mod_[i] = pole_dampings_[i] *
                           (offset + agc_factor_ * fAGCStateMean);
  }
}

float ModulePZFC::DetectFun(float fIN) {
  if (fIN < 0.0f)
    fIN = 0.0f;
  float fDetect = Minimum(1.0f, fIN);
  float fA = 0.25f;
  return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f);
}

inline float ModulePZFC::Minimum(float a, float b) {
  if (a < b)
    return a;
  else
    return b;
}

void ModulePZFC::Process(const SignalBank& input) {
  // Set the start time of the output buffer
  output_.set_start_time(input.start_time());

  for (int s = 0; s < input.buffer_length(); ++s) {
    float input_sample = input.sample(0, s);

    // Lowpass filter the input with a zero at PI
    input_sample = 0.5f * input_sample + 0.5f * last_input_;
    last_input_ = input.sample(0, s);

    inputs_[channel_count_ - 1] = input_sample;
    for (int c = 0; c < channel_count_ - 1; ++c)
      inputs_[c] = previous_out_[c + 1];

    // PZBankStep2
    // to save a bunch of divides
    float damp_rate = 1.0f / (maxdamp_ - mindamp_);

    for (int c = channel_count_ - 1; c > -1; --c) {
      float interp_factor = (pole_damps_mod_[c] - mindamp_) * damp_rate;

      float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor;
      float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor;

      // optional improvement to constellation adds a bit to r
      float fd = pole_frequencies_[c] * pole_damps_mod_[c];
      // quadratic for small values, then linear
      r = r + 0.25f * fd * Minimum(0.05f, fd);

      float zb1 = -2.0f * x;
      float zb2 = r * r;

      /* canonic poles but with input provided where unity DC gain is assured
       * (mean value of state is always equal to mean value of input)
       */
      float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1
                                   - (state_2_[c] - inputs_[c]) * zb2;

      // canonic zeros part as before:
      float output = za0_[c] * new_state + za1_[c] * state_1_[c]
                                         + za2_[c] * state_2_[c];

      // cubic compression nonlinearity
      output -= 0.0001f * pow(output, 3);

      output_.set_sample(c, s, output);
      detect_[c] = DetectFun(output);
      state_2_[c] = state_1_[c];
      state_1_[c] = new_state;
    }

    if (do_agc_step_)
      AGCDampStep();

    for (int c = 0; c < channel_count_; ++c)
      previous_out_[c] = output_[c][s];
  }
  PushOutput();
}
}  // namespace aimc