Mercurial > hg > aimc
view trunk/matlab/bmm/carfac/SAI_UpdateBuffers.m @ 619:2e456754fe20
Better functionization of SAI, and new way to make picture with lag
marginal and smoothed history of lag marginal.
author | dicklyon@google.com |
---|---|
date | Mon, 13 May 2013 21:15:56 +0000 |
parents | 2b2ef398b557 |
children | d0ff15c36828 |
line wrap: on
line source
% Copyright 2013, Google, Inc. % Author: Richard F. Lyon % % This Matlab file is part of an implementation of Lyon's cochlear model: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" % to supplement Lyon's upcoming book "Human and Machine Hearing" % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function layer_array = SAI_UpdateBuffers(layer_array, seg_naps, seg_num) % function layer_array = SAI_UpdateBuffers(layer_array, seg_naps, seg_num) % % Input/Output: layer_array contains all the coefficients and state for % the layer of different time scales of SAI; % we might want to separate these as in CARFAC. % % seg_naps is a new segmeent of NAP from the CAR-FAC to shift into the % first layer. Each subsequent layer gets input off the input end of the % previous layer, with smoothing and decimation. % % The segment index seg_num is used to control sub-sampled updates of % the larger-scale layers. n_layers = length(layer_array); [seg_len, n_nap_ch] = size(seg_naps); % Array of what to shift in to first or next layer. new_chunk = seg_naps; gain = 1.05; % gain from layer to layer; could be layer dependent. %% % Decimate using a 2-3-4-filter and partial differencing emphasize onsets: kernel = filter([1 1]/2, 1, filter([1 1 1]/3, 1, [1 1 1 1 0 0 0 0]/4)); kernel = kernel + 2*diff([0, kernel]); % figure(1) % plot(kernel) %% for layer = 1:n_layers [n_lags, n_ch] = size(layer_array(layer).nap_buffer); if (n_nap_ch ~= n_ch) error('Wrong number of channels in nap_buffer.'); end interval = layer_array(layer).update_interval; if (0 == mod(seg_num, interval)) % Account for 2X decimation and infrequent updates; find number of time % points to shift in. Tolerate slip of a fraction of a sample. n_shift = seg_len * interval / (2.0^(layer - 1)); if layer > 1 % Add the leftover fraction before floor. n_shift = n_shift + layer_array(layer).nap_fraction; layer_array(layer).nap_fraction = n_shift - floor(n_shift); n_shift = floor(n_shift); % Grab new stuff from new end (big time indices) of previous layer. % Take twice as many times as we need, + 5, for decimation, and do % 343 smoothing to get new points. new_chunk = ... layer_array(layer - 1).nap_buffer((end - 2*n_shift - 4):end, :); new_chunk = filter(kernel, 1, new_chunk); new_chunk = gain * new_chunk(7:2:end, :); end % Put new stuff in at latest time indices. layer_array(layer).nap_buffer = ... [layer_array(layer).nap_buffer((1 + n_shift):end, :); ... new_chunk]; % this should fit just right if we have n_shift new times. end end return