Mercurial > hg > aimc
view trunk/matlab/bmm/carfac/CARFAC_Run_Open_Loop.m @ 536:2964a3b4a00a
New design params, including narrower AGC, Greenwood map for more channels, default 71, some renaming, open loop feature, ...
author | dicklyon@google.com |
---|---|
date | Thu, 22 Mar 2012 22:37:56 +0000 |
parents | |
children |
line wrap: on
line source
% Copyright 2012, Google, Inc. % Author Richard F. Lyon % % This Matlab file is part of an implementation of Lyon's cochlear model: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" % to supplement Lyon's upcoming book "Human and Machine Hearing" % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [CF, decim_naps, naps] = CARFAC_Run_Open_Loop ... (CF, input_waves, AGC_plot_fig_num) % function [CF, decim_naps, naps] = CARFAC_Run_Open_Loop ... % (CF, input_waves, AGC_plot_fig_num) % % Freeze the damping by disabling AGC feedback, and run so we can % see what the filters and AGC do in that frozen state. And zap the % stage gain in the AGC so we can see the state filters without combining % them. [n_samp, n_ears] = size(input_waves); n_ch = CF.n_ch; if nargin < 3 AGC_plot_fig_num = 0; end if n_ears ~= CF.n_ears error('bad number of input_waves channels passed to CARFAC_Run') end naps = zeros(n_samp, n_ch, n_ears); seglen = 16; n_segs = ceil(n_samp / seglen); if nargout > 1 % make decimated detect output: decim_naps = zeros(n_segs, CF.n_ch, CF.n_ears); else decim_naps = []; end if nargout > 2 % make decimated detect output: naps = zeros(n_samp, CF.n_ch, CF.n_ears); else naps = []; end % zero the deltas: for ear = 1:CF.n_ears CF.CAR_state(ear).dzB_memory = 0; CF.CAR_state(ear).dg_memory = 0; end open_loop = 1; CF.AGC_coeffs.AGC_stage_gain = 0; % HACK to see the stages separately smoothed_state = 0; for seg_num = 1:n_segs if seg_num == n_segs % The last segement may be short of seglen, but do it anyway: k_range = (seglen*(seg_num - 1) + 1):n_samp; else k_range = seglen*(seg_num - 1) + (1:seglen); end % Process a segment to get a slice of decim_naps, and plot AGC state: [seg_naps, CF] = CARFAC_Run_Segment(CF, input_waves(k_range, :), ... open_loop); if ~isempty(naps) for ear = 1:n_ears % Accumulate segment naps to make full naps naps(k_range, :, ear) = seg_naps(:, :, ear); end end if ~isempty(decim_naps) for ear = 1:n_ears decim_naps(seg_num, :, ear) = CF.IHC_state(ear).ihc_accum / seglen; CF.IHC_state(ear).ihc_accum = zeros(n_ch,1); end end if AGC_plot_fig_num figure(AGC_plot_fig_num); hold off; clf set(gca, 'Position', [.25, .25, .5, .5]) smoothed_state = (3*smoothed_state + CF.AGC_state(1).AGC_memory) / 4; for ear = 1 total_state = 0; for stage = 1:4; weighted_state = smoothed_state(:, stage) * 2^(stage-1); plot(weighted_state, 'k-', 'LineWidth', 0.4); hold on total_state = total_state + weighted_state; end maxes(ear) = max(total_state); plot(total_state, 'k-', 'LineWidth', 1.1) end axis([0, CF.n_ch+1, 0.0, max(maxes) * 1.01 + 0.002]); drawnow end end