Mercurial > hg > aimc
view trunk/matlab/bmm/carfac/SAI_RunLayered.m @ 617:2767ce76a1b0
Minor tweaks to AGC params, state update, and hacking script.
author | dicklyon@google.com |
---|---|
date | Thu, 09 May 2013 18:24:51 +0000 |
parents | 2b2ef398b557 |
children | 2e456754fe20 |
line wrap: on
line source
% Copyright 2013, Google, Inc. % Author: Richard F. Lyon % % This Matlab file is part of an implementation of Lyon's cochlear model: % "Cascade of Asymmetric Resonators with Fast-Acting Compression" % to supplement Lyon's upcoming book "Human and Machine Hearing" % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [frame_rate, num_frames] = SAI_RunLayered(CF, input_waves) % function [CF, SAI_movie] = CARFAC_Run_Layered_SAI(CF, input_waves) % This function runs the CARFAC and generates an SAI movie, dumped as PNG % files for now. % Layer 1 is not decimated from the 22050 rate; subsequent layers have % smoothing and 2X decimation each. All layers get composited togehter % into movie frames. n_ch = CF.n_ch; [n_samp, n_ears] = size(input_waves); if n_ears ~= CF.n_ears error('bad number of input_waves channels passed to CARFAC_Run') end fs = CF.fs; % Design the composite log-lag SAI using these parameters and defaults. n_layers = 10; width_per_layer = 40; [layer_array, total_width] = SAI_DesignLayers(n_layers, width_per_layer); % Make the composite SAI image array. composite_frame = zeros(n_ch, total_width); seglen = round(fs * 0.020); % Pick about 20 ms segments frame_rate = fs / seglen; n_segs = ceil(n_samp / seglen); % Make the history buffers in the layers_array: for layer = 1:n_layers layer_array(layer).nap_buffer = zeros(layer_array(layer).buffer_width, n_ch); layer_array(layer).nap_fraction = 0; % leftover fraction to shift in. end for seg_num = 1:n_segs % k_range is the range of input sample indices for this segment if seg_num == n_segs % The last segment may be short of seglen, but do it anyway: k_range = (seglen*(seg_num - 1) + 1):n_samp; else k_range = seglen*(seg_num - 1) + (1:seglen); end % Process a segment to get a slice of decim_naps, and plot AGC state: [seg_naps, CF] = CARFAC_Run_Segment(CF, input_waves(k_range, :)); seg_naps = max(0, seg_naps); % Rectify if seg_num == n_segs % pad out the last result seg_naps = [seg_naps; zeros(seglen - size(seg_naps,1), size(seg_naps, 2))]; end % Shift new data into some or all of the layer buffers: layer_array = SAI_UpdateBuffers(layer_array, seg_naps, seg_num); for layer = n_layers:-1:1 % blend from coarse to fine update_interval = layer_array(layer).update_interval; if 0 == mod(seg_num, update_interval) nap_buffer = real(layer_array(layer).nap_buffer); n_buffer_times = size(nap_buffer, 1); width = layer_array(layer).frame_width; % To render linear SAI to. new_frame = zeros(n_ch, width); % Make the window to use for all the channels at this layer. layer_factor = 1.5; window_size = layer_array(layer).window_width; after_samples = layer_array(layer).future_lags; window_range = (1:window_size) + ... (n_buffer_times - window_size) - after_samples; window = sin((1:window_size)' * pi / window_size); % This should not go negative! offset_range = (1:width) + ... (n_buffer_times - width - window_size); % CHECK if any(offset_range < 0) error; end % smooth across channels; more in later layers smoothed_buffer = smooth1d(nap_buffer', 0.25*(layer - 2))'; % For each buffer column (channel), pick a trigger and align into SAI_frame for ch = 1:n_ch smooth_wave = smoothed_buffer(:, ch); % for the trigger [peak_val, trigger_time] = max(smooth_wave(window_range) .* window); nap_wave = nap_buffer(:, ch); % for the waveform if peak_val <= 0 % just use window center instead [peak_val, trigger_time] = max(window); end if layer == n_layers % mark the trigger points to display as imaginary. layer_array(layer).nap_buffer(trigger_time + window_range(1) - 1, ch) = ... layer_array(layer).nap_buffer(trigger_time + window_range(1) - 1, ch) + 1i; end new_frame(ch, :) = nap_wave(trigger_time + offset_range)'; end composite_frame = SAI_BlendFrameIntoComposite(new_frame, ... layer_array(layer), composite_frame); end end lag_marginal = mean(composite_frame, 1); % means max out near 1 or 2 frame_bottom = zeros(size(composite_frame)); % will end up being 1/3 n_bottom_rows = size(frame_bottom, 1); for height = 1:n_bottom_rows big_ones = lag_marginal > 1*height/n_bottom_rows; frame_bottom(n_bottom_rows - height + 1, big_ones) = 2; % 2 for black end if 0 == mod(seg_num, update_interval) || seg_num == 1 coc_gram = layer_array(end).nap_buffer'; [n_ch, n_width] = size(composite_frame); coc_gram = [coc_gram, zeros(n_ch, n_width - size(coc_gram, 2))]; trigger_gram = 2 * (imag(coc_gram) ~= 0); coc_gram = real(coc_gram); end display_frame = [coc_gram; trigger_gram; ... composite_frame(floor(1:0.5:end), :); frame_bottom]; cmap = jet; cmap = 1 - gray; % jet figure(10) image(32*display_frame); colormap(cmap); drawnow imwrite(32*display_frame, cmap, sprintf('frames/frame%05d.png', seg_num)); end num_frames = seg_num; return