diff C++/AGC.C @ 601:d838de2ce1b1

Added AGC::designAGC() This new method is not debugged ... that is the next step.
author flatmax
date Tue, 02 Apr 2013 08:38:23 +0000
parents 40934f897a56
children c692afd86cc9
line wrap: on
line diff
--- a/C++/AGC.C	Tue Feb 26 10:43:26 2013 +0000
+++ b/C++/AGC.C	Tue Apr 02 08:38:23 2013 +0000
@@ -23,12 +23,129 @@
 
 #include "AGC.H"
 
-AGC::AGC()
-{
-    //ctor
+AGC::AGC() {
 }
 
-AGC::~AGC()
-{
-    //dtor
+AGC::~AGC() {
 }
+
+void AGC::designAGC(FP_TYPE fs, int n_ch) {
+    int n_AGC_stages = params.n_stages;
+//AGC_coeffs = struct( ...
+//  'n_ch', n_ch, ...
+//  'n_AGC_stages', n_AGC_stages, ...
+//  'AGC_stage_gain', AGC_params.AGC_stage_gain);
+
+// AGC1 pass is smoothing from base toward apex;
+// AGC2 pass is back, which is done first now (in double exp. version)
+//AGC1_scales = AGC_params.AGC1_scales;
+//AGC2_scales = AGC_params.AGC2_scales;
+
+    coeffs.AGC_epsilon = Array<FP_TYPE, 1, Dynamic>::Zero(1, n_AGC_stages);  // the 1/(tau*fs) roughly
+    FP_TYPE decim = 1.;
+//AGC_coeffs.decimation = AGC_params.decimation;
+
+    FP_TYPE total_DC_gain = 0.;
+    for (int stage = 1; stage<=n_AGC_stages; stage++) {
+        FP_TYPE tau = params.time_constants(stage-1); // time constant in seconds
+        decim = decim * params.decimation(stage-1); // net decim to this stage
+        // epsilon is how much new input to take at each update step:
+        coeffs.AGC_epsilon(stage-1) = 1. - exp(-decim / (tau * fs));
+        // effective number of smoothings in a time constant:
+        FP_TYPE ntimes = tau * (fs / decim);  // typically 5 to 50
+
+        // decide on target spread (variance) and delay (mean) of impulse
+        // response as a distribution to be convolved ntimes:
+        // TODO (dicklyon): specify spread and delay instead of scales???
+        FP_TYPE delay = (param.AGC2_scales(stage-1) - param.AGC1_scales(stage-1)) / ntimes;
+        FP_TYPE spread_sq = (param.AGC1_scales(stage-1).pow(2.) + param.AGC2_scales(stage-1).pow(2)) / ntimes;
+
+        // get pole positions to better match intended spread and delay of
+        // [[geometric distribution]] in each direction (see wikipedia)
+        FP_TYPE u = 1. + 1. / spread_sq; // these are based on off-line algebra hacking.
+        FP_TYPE p = u - sqrt(pow(u,2.) - 1.); // pole that would give spread if used twice.
+        FP_TYPE dp = delay * (1. - 2.*p +pow(p,2.))/2.;
+                              FP_TYPE polez1 = p - dp;
+                              FP_TYPE polez2 = p + dp;
+                              coeffs.AGC_polez1(stage) = polez1;
+                              coeffs.AGC_polez2(stage) = polez2;
+
+                              // try a 3- or 5-tap FIR as an alternative to the double exponential:
+                              Array<FP_TYPE,1, Dynamic> AGC_spatial_FIR;
+                              int n_taps = 0;
+                              int FIR_OK = 0;
+                              int n_iterations = 1;
+        while (~FIR_OK) {
+        switch (n_taps) {
+            case 0:
+                // first attempt a 3-point FIR to apply once:
+                n_taps = 3;
+                break;
+            case 3:
+                // second time through, go wider but stick to 1 iteration
+                n_taps = 5;
+                break;
+            case 5:
+                // apply FIR multiple times instead of going wider:
+                n_iterations = n_iterations + 1;
+                if (n_iterations > 16) {
+                    cerr<<"Too many n_iterations in CARFAC_DesignAGC"<<endl;
+                    exit(AGC_DESIGN_ITERATION_ERROR);
+                }
+                break;
+            default:
+                // to do other n_taps would need changes in CARFAC_Spatial_Smooth
+                // and in Design_FIR_coeffs
+                cerr<<"Bad n_taps in CARFAC_DesignAGC"<<endl;
+                exit(AGC_DESIGN_TAPS_OOB_ERROR);
+                break;
+            }
+            FIR_OK = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iterations,AGC_spatial_FIR);
+        }
+        // when FIR_OK, store the resulting FIR design in coeffs:
+        coeff.AGC_spatial_iterations(stage-1) = n_iterations;
+        coeff.AGC_spatial_FIR.col(stage-1).block(0,AGC_spatial_FIR.size()) = AGC_spatial_FIR;
+        coeff.AGC_spatial_n_taps(stage-1) = n_taps;
+
+        // accumulate DC gains from all the stages, accounting for stage_gain:
+        total_DC_gain = total_DC_gain + params.AGC_stage_gain.pow(stage-1);
+
+        // TODO (dicklyon) -- is this the best binaural mixing plan?
+        if (stage == 1)
+        coeff.AGC_mix_coeffs(stage-1) = 0.;
+        else
+            coeff.AGC_mix_coeffs(stage-1) = param.AGC_mix_coeff / (tau * (fs / decim));
+        }
+
+coeff.AGC_gain = total_DC_gain;
+
+// adjust the detect_scale to be the reciprocal DC gain of the AGC filters:
+AGC_coeffs.detect_scale = 1. / total_DC_gain;
+
+}
+
+int OK AGC::Design_FIR_coeffs(int n_taps, FP_TYPE var, FP_TYPE mn, int n_iter, Array<FP_TYPE,Dynamic,1> &FIR) {
+// reduce mean and variance of smoothing distribution by n_iterations:
+    mn = mn / (FP_TYPE)n_iter;
+    var = var / (FP_TYPE)n_iter;
+    switch (n_taps) {
+    case 3:
+        // based on solving to match mean and variance of [a, 1-a-b, b]:
+        a = (var + mn*mn - mn) / 2.;
+        b = (var + mn*mn + mn) / 2.;
+        FIR.resize(3,1);
+        FIR<<a, 1. - a - b, b;
+        OK = FIR(2) >= 0.2;
+    case 5
+            // based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
+            a = ((var + mn*mn)*2./5. - mn*2./3.) / 2.;
+        b = ((var + mn*mn)*2./5. + mn*2./3.) / 2.;
+        // first and last coeffs are implicitly duplicated to make 5-point FIR:
+        FIR.resize(5,1);
+        FIR<<a/2., 1. - a - b, b/2.;
+        OK = FIR(2) >= 0.1;
+    default:
+        cerr<<"Bad n_taps in AGC_spatial_FIR"<<endl;
+        exit(AGC_FIR_TAP_COUNT_ERROR);
+    }
+}