Mercurial > hg > aimc
diff C++/AGC.C @ 601:d838de2ce1b1
Added AGC::designAGC()
This new method is not debugged ... that is the next step.
author | flatmax |
---|---|
date | Tue, 02 Apr 2013 08:38:23 +0000 |
parents | 40934f897a56 |
children | c692afd86cc9 |
line wrap: on
line diff
--- a/C++/AGC.C Tue Feb 26 10:43:26 2013 +0000 +++ b/C++/AGC.C Tue Apr 02 08:38:23 2013 +0000 @@ -23,12 +23,129 @@ #include "AGC.H" -AGC::AGC() -{ - //ctor +AGC::AGC() { } -AGC::~AGC() -{ - //dtor +AGC::~AGC() { } + +void AGC::designAGC(FP_TYPE fs, int n_ch) { + int n_AGC_stages = params.n_stages; +//AGC_coeffs = struct( ... +// 'n_ch', n_ch, ... +// 'n_AGC_stages', n_AGC_stages, ... +// 'AGC_stage_gain', AGC_params.AGC_stage_gain); + +// AGC1 pass is smoothing from base toward apex; +// AGC2 pass is back, which is done first now (in double exp. version) +//AGC1_scales = AGC_params.AGC1_scales; +//AGC2_scales = AGC_params.AGC2_scales; + + coeffs.AGC_epsilon = Array<FP_TYPE, 1, Dynamic>::Zero(1, n_AGC_stages); // the 1/(tau*fs) roughly + FP_TYPE decim = 1.; +//AGC_coeffs.decimation = AGC_params.decimation; + + FP_TYPE total_DC_gain = 0.; + for (int stage = 1; stage<=n_AGC_stages; stage++) { + FP_TYPE tau = params.time_constants(stage-1); // time constant in seconds + decim = decim * params.decimation(stage-1); // net decim to this stage + // epsilon is how much new input to take at each update step: + coeffs.AGC_epsilon(stage-1) = 1. - exp(-decim / (tau * fs)); + // effective number of smoothings in a time constant: + FP_TYPE ntimes = tau * (fs / decim); // typically 5 to 50 + + // decide on target spread (variance) and delay (mean) of impulse + // response as a distribution to be convolved ntimes: + // TODO (dicklyon): specify spread and delay instead of scales??? + FP_TYPE delay = (param.AGC2_scales(stage-1) - param.AGC1_scales(stage-1)) / ntimes; + FP_TYPE spread_sq = (param.AGC1_scales(stage-1).pow(2.) + param.AGC2_scales(stage-1).pow(2)) / ntimes; + + // get pole positions to better match intended spread and delay of + // [[geometric distribution]] in each direction (see wikipedia) + FP_TYPE u = 1. + 1. / spread_sq; // these are based on off-line algebra hacking. + FP_TYPE p = u - sqrt(pow(u,2.) - 1.); // pole that would give spread if used twice. + FP_TYPE dp = delay * (1. - 2.*p +pow(p,2.))/2.; + FP_TYPE polez1 = p - dp; + FP_TYPE polez2 = p + dp; + coeffs.AGC_polez1(stage) = polez1; + coeffs.AGC_polez2(stage) = polez2; + + // try a 3- or 5-tap FIR as an alternative to the double exponential: + Array<FP_TYPE,1, Dynamic> AGC_spatial_FIR; + int n_taps = 0; + int FIR_OK = 0; + int n_iterations = 1; + while (~FIR_OK) { + switch (n_taps) { + case 0: + // first attempt a 3-point FIR to apply once: + n_taps = 3; + break; + case 3: + // second time through, go wider but stick to 1 iteration + n_taps = 5; + break; + case 5: + // apply FIR multiple times instead of going wider: + n_iterations = n_iterations + 1; + if (n_iterations > 16) { + cerr<<"Too many n_iterations in CARFAC_DesignAGC"<<endl; + exit(AGC_DESIGN_ITERATION_ERROR); + } + break; + default: + // to do other n_taps would need changes in CARFAC_Spatial_Smooth + // and in Design_FIR_coeffs + cerr<<"Bad n_taps in CARFAC_DesignAGC"<<endl; + exit(AGC_DESIGN_TAPS_OOB_ERROR); + break; + } + FIR_OK = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iterations,AGC_spatial_FIR); + } + // when FIR_OK, store the resulting FIR design in coeffs: + coeff.AGC_spatial_iterations(stage-1) = n_iterations; + coeff.AGC_spatial_FIR.col(stage-1).block(0,AGC_spatial_FIR.size()) = AGC_spatial_FIR; + coeff.AGC_spatial_n_taps(stage-1) = n_taps; + + // accumulate DC gains from all the stages, accounting for stage_gain: + total_DC_gain = total_DC_gain + params.AGC_stage_gain.pow(stage-1); + + // TODO (dicklyon) -- is this the best binaural mixing plan? + if (stage == 1) + coeff.AGC_mix_coeffs(stage-1) = 0.; + else + coeff.AGC_mix_coeffs(stage-1) = param.AGC_mix_coeff / (tau * (fs / decim)); + } + +coeff.AGC_gain = total_DC_gain; + +// adjust the detect_scale to be the reciprocal DC gain of the AGC filters: +AGC_coeffs.detect_scale = 1. / total_DC_gain; + +} + +int OK AGC::Design_FIR_coeffs(int n_taps, FP_TYPE var, FP_TYPE mn, int n_iter, Array<FP_TYPE,Dynamic,1> &FIR) { +// reduce mean and variance of smoothing distribution by n_iterations: + mn = mn / (FP_TYPE)n_iter; + var = var / (FP_TYPE)n_iter; + switch (n_taps) { + case 3: + // based on solving to match mean and variance of [a, 1-a-b, b]: + a = (var + mn*mn - mn) / 2.; + b = (var + mn*mn + mn) / 2.; + FIR.resize(3,1); + FIR<<a, 1. - a - b, b; + OK = FIR(2) >= 0.2; + case 5 + // based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]: + a = ((var + mn*mn)*2./5. - mn*2./3.) / 2.; + b = ((var + mn*mn)*2./5. + mn*2./3.) / 2.; + // first and last coeffs are implicitly duplicated to make 5-point FIR: + FIR.resize(5,1); + FIR<<a/2., 1. - a - b, b/2.; + OK = FIR(2) >= 0.1; + default: + cerr<<"Bad n_taps in AGC_spatial_FIR"<<endl; + exit(AGC_FIR_TAP_COUNT_ERROR); + } +}