Mercurial > hg > aimc
diff trunk/matlab/bmm/carfac/CARFAC_Run.m @ 534:95a11cca4619
Add CARFAC_Design_Doc.txt, CARFAC_Run_Segment.m, and some renames; rename various variables to be more parallel; clean up init code and such.
author | dicklyon@google.com |
---|---|
date | Fri, 16 Mar 2012 04:19:24 +0000 |
parents | fb60ea429bb8 |
children | 2964a3b4a00a |
line wrap: on
line diff
--- a/trunk/matlab/bmm/carfac/CARFAC_Run.m Mon Mar 12 06:14:53 2012 +0000 +++ b/trunk/matlab/bmm/carfac/CARFAC_Run.m Fri Mar 16 04:19:24 2012 +0000 @@ -17,9 +17,9 @@ % See the License for the specific language governing permissions and % limitations under the License. -function [naps, CF, decim_naps] = CARFAC_Run ... +function [CF, decim_naps, naps] = CARFAC_Run ... (CF, input_waves, AGC_plot_fig_num) -% function [naps, CF, decim_naps] = CARFAC_Run ... +% function [CF, decim_naps, naps] = CARFAC_Run ... % (CF, input_waves, AGC_plot_fig_num) % This function runs the CARFAC; that is, filters a 1 or more channel % sound input to make one or more neural activity patterns (naps). @@ -42,94 +42,82 @@ % filters and AGC states concurrently, so that the different channels can % interact easily. The inner loops are over filterbank channels, and % this level should be kept efficient. -% -% See other functions for designing and characterizing the CARFAC: -% CF = CARFAC_Design(fs, CF_filter_params, CF_AGC_params, n_mics) -% transfns = CARFAC_Transfer_Functions(CF, to_chans, from_chans) -[n_samp, n_mics] = size(input_waves); +[n_samp, n_ears] = size(input_waves); n_ch = CF.n_ch; if nargin < 3 AGC_plot_fig_num = 0; end -if n_mics ~= CF.n_mics +if n_ears ~= CF.n_ears error('bad number of input_waves channels passed to CARFAC_Run') end -naps = zeros(n_samp, n_ch, n_mics); -decim_k = 0; -k_NAP_decim = 0; -NAP_decim = 8; -if nargout > 2 + +naps = zeros(n_samp, n_ch, n_ears); + +seglen = 16; +n_segs = ceil(n_samp / seglen); + +if nargout > 1 % make decimated detect output: - decim_naps = zeros(ceil(n_samp/NAP_decim), CF.n_ch, CF.n_mics); + decim_naps = zeros(n_segs, CF.n_ch, CF.n_ears); else decim_naps = []; end +if nargout > 2 + % make decimated detect output: + naps = zeros(n_samp, CF.n_ch, CF.n_ears); +else + naps = []; +end -k_AGC = 0; -AGC_plot_decim = 16; % how often to plot AGC state; TODO: use segments - - -detects = zeros(n_ch, n_mics); -for k = 1:n_samp -% CF.k_mod_decim = mod(CF.k_mod_decim + 1, decim1); % global time phase - k_NAP_decim = mod(k_NAP_decim + 1, NAP_decim); % phase of decimated nap - % at each time step, possibly handle multiple channels - for mic = 1:n_mics - [filters_out, CF.filter_state(mic)] = CARFAC_FilterStep( ... - input_waves(k, mic), CF.filter_coeffs, CF.filter_state(mic)); - - % update IHC state & output on every time step, too - [ihc_out, CF.IHC_state(mic)] = CARFAC_IHCStep( ... - filters_out, CF.IHC_coeffs, CF.IHC_state(mic)); - - detects(:, mic) = ihc_out; % for input to AGC, and out to SAI - - naps(k, :, mic) = ihc_out; % output to neural activity pattern - +for seg_num = 1:n_segs + if seg_num == n_segs + % The last segement may be short of seglen, but do it anyway: + k_range = (seglen*(seg_num - 1) + 1):n_samp; + else + k_range = seglen*(seg_num - 1) + (1:seglen); end - if ~isempty(decim_naps) && (k_NAP_decim == 0) - decim_k = decim_k + 1; % index of decimated NAP - for mic = 1:n_mics - decim_naps(decim_k, :, mic) = CF.IHC_state(mic).ihc_accum / ... - NAP_decim; % for cochleagram - CF.IHC_state(mic).ihc_accum = zeros(n_ch,1); + % Process a segment to get a slice of decim_naps, and plot AGC state: + [seg_naps, CF] = CARFAC_Run_Segment(CF, input_waves(k_range, :)); + + if ~isempty(naps) + for ear = 1:n_ears + % Accumulate segment naps to make full naps + naps(k_range, :, ear) = seg_naps(:, :, ear); end end - % run the AGC update step, taking input from IHC_state, decimating - % internally, all mics at once due to mixing across them: - [CF.AGC_state, updated] = ... - CARFAC_AGCStep(CF.AGC_coeffs, detects, CF.AGC_state); - % connect the feedback from AGC_state to filter_state when it updates - if updated - CF = CARFAC_Close_AGC_Loop(CF); + if ~isempty(decim_naps) + for ear = 1:n_ears + decim_naps(seg_num, :, ear) = CF.IHC_state(ear).ihc_accum / seglen; + CF.IHC_state(ear).ihc_accum = zeros(n_ch,1); + end end - k_AGC = mod(k_AGC + 1, AGC_plot_decim); - if AGC_plot_fig_num && k_AGC == 0 + if AGC_plot_fig_num figure(AGC_plot_fig_num); hold off; clf set(gca, 'Position', [.25, .25, .5, .5]) - maxsum = 0; - for mic = 1:n_mics - plot(CF.AGC_state(mic).AGC_memory(:, 1), 'k-', 'LineWidth', 1) - maxes(mic) = max(CF.AGC_state(mic).AGC_memory(:)); + for ear = 1:n_ears + plot(CF.AGC_state(ear).AGC_memory(:, 1), 'k-', 'LineWidth', 1) + maxes(ear) = max(CF.AGC_state(ear).AGC_memory(:)); hold on for stage = 1:3; - plot(2^(stage-1) * (CF.AGC_state(mic).AGC_memory(:, stage) - ... - 2 * CF.AGC_state(mic).AGC_memory(:, stage+1))); + plot(2^(stage-1) * (CF.AGC_state(ear).AGC_memory(:, stage) - ... + 2 * CF.AGC_state(ear).AGC_memory(:, stage+1))); end stage = 4; - plot(2^(stage-1) * CF.AGC_state(mic).AGC_memory(:, stage)); + plot(2^(stage-1) * CF.AGC_state(ear).AGC_memory(:, stage)); end - axis([0, CF.n_ch+1, -0.01, max(maxes) + 0.01]); + axis([0, CF.n_ch+1, 0.0, max(maxes) + 0.01]); drawnow end - + end + +