diff src/Scripts/Multi-slice_test.py @ 32:9122efd2b227

-New AIMCopy main for the SSI features (temporary hack till I get a working module load system) -LocalMax strobe criterion. This is faster and better than the parabola version, which still seems buggy. -Noise generator module. Adds noise to a signal. Uses boost for the random number generator. -New options for the SSI -Slice now respects all its flags (oops!). -MATLAB functions for visualisation -Scripts for generating data to view in MATLAB -Script to download and build HTK - useful for running experiments
author tomwalters
date Thu, 25 Feb 2010 22:02:00 +0000
parents
children c5f5e9569863
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Scripts/Multi-slice_test.py	Thu Feb 25 22:02:00 2010 +0000
@@ -0,0 +1,213 @@
+#!/usr/bin/env python
+# encoding: utf-8
+#
+# AIM-C: A C++ implementation of the Auditory Image Model
+# http://www.acousticscale.org/AIMC
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program.  If not, see <http://www.gnu.org/licenses/>.
+"""
+Profiles_test.py
+
+Created by Thomas Walters on 2010-02-22.
+Copyright 2010 Thomas Walters <tom@acousticscale.org>
+Test the AIM-C model from filterbank to SSI profiles
+"""
+
+import aimc
+from scipy.io import wavfile
+from scipy import io
+import scipy
+import pylab
+from itertools import izip, chain, repeat
+
+def grouper(n, iterable, padvalue=None):
+    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
+    return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
+    
+def BankToArray(out_bank):
+  channel_count = out_bank.channel_count()
+  out_buffer_length = out_bank.buffer_length()
+  out = scipy.zeros((channel_count, out_buffer_length))
+  for ch in range(0, channel_count):
+    for i in range(0, out_buffer_length):  
+      out[ch, i] = out_bank.sample(ch, i)
+  return out
+
+def StrobesToList(bank):
+  channel_count = bank.channel_count()
+  strobes = []
+  for ch in range(0, channel_count):
+    s = []
+    for i in range(0, bank.strobe_count(ch)):
+      s.append(bank.strobe(ch, i))
+    strobes.append(s)
+
+def main():
+  wave_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/Sounds/"
+  #features_path = "/Users/Tom/Documents/Work/PhD/HTK-AIM/work08-jess-original-rec_rubber/features/"
+  
+  file_name = "ii/ii172.5p112.5s100.0t+000itd"
+  
+  wave_suffix = ".wav"
+  features_suffix = ".mat"
+  
+  frame_period_ms = 10;
+    
+  wave_filename = wave_path + file_name + wave_suffix
+  #features_filename = features_path + file_name + features_suffix
+  
+  (sample_rate, input_wave) = wavfile.read(wave_filename)
+  wave_length = input_wave.size
+  buffer_length = int(frame_period_ms * sample_rate / 1000)
+ 
+  #pylab.plot(input_wave)
+  #pylab.show()
+  
+  input_sig = aimc.SignalBank()
+  input_sig.Initialize(1, buffer_length, sample_rate)
+  parameters = aimc.Parameters()
+  parameters.SetFloat("sai.frame_period_ms", 10.0)
+  parameters.SetInt("input.buffersize", 480)
+
+  mod_gt = aimc.ModuleGammatone(parameters)
+  mod_hl = aimc.ModuleHCL(parameters)
+  mod_strobes = aimc.ModuleLocalMax(parameters) 
+  mod_sai = aimc.ModuleSAI(parameters)
+  parameters.SetBool("ssi.pitch_cutoff", True)
+  parameters.SetBool("ssi.weight_by_cutoff", False)
+  parameters.SetBool("ssi.weight_by_scaling", True)
+  parameters.SetBool("ssi.log_cycles_axis", True)
+  mod_ssi = aimc.ModuleSSI(parameters) 
+  
+  parameters.SetFloat("nap.lowpass_cutoff", 100.0)
+  mod_nap_smooth = aimc.ModuleHCL(parameters)
+  mod_scaler = aimc.ModuleScaler(parameters)
+
+  parameters.SetBool("slice.all", False)
+  parameters.SetInt("slice.lower_index", 77)
+  parameters.SetInt("slice.upper_index", 150)
+  slice_1 = aimc.ModuleSlice(parameters)
+
+  parameters.SetInt("slice.lower_index", 210)
+  parameters.SetInt("slice.upper_index", 240)
+  slice_2 = aimc.ModuleSlice(parameters)
+
+  parameters.SetInt("slice.lower_index", 280)
+  parameters.SetInt("slice.upper_index", 304)
+  slice_3 = aimc.ModuleSlice(parameters)
+
+  parameters.SetInt("slice.lower_index", 328)
+  parameters.SetInt("slice.upper_index", 352)
+  slice_4 = aimc.ModuleSlice(parameters)
+
+  parameters.SetBool("slice.all", True)
+  slice_5 = aimc.ModuleSlice(parameters)
+  
+  nap_profile = aimc.ModuleSlice(parameters)
+
+  features_1 = aimc.ModuleGaussians(parameters)
+  features_2 = aimc.ModuleGaussians(parameters)
+  features_3 = aimc.ModuleGaussians(parameters)
+  features_4 = aimc.ModuleGaussians(parameters)
+  features_5 = aimc.ModuleGaussians(parameters)
+
+  mod_gt.AddTarget(mod_hl)
+  mod_gt.AddTarget(mod_nap_smooth)
+  mod_nap_smooth.AddTarget(nap_profile)
+  nap_profile.AddTarget(mod_scaler)
+  mod_hl.AddTarget(mod_strobes)
+  mod_strobes.AddTarget(mod_sai)
+  mod_sai.AddTarget(mod_ssi)
+  mod_ssi.AddTarget(slice_1)
+  mod_ssi.AddTarget(slice_2)
+  mod_ssi.AddTarget(slice_3)
+  mod_ssi.AddTarget(slice_4)
+  mod_ssi.AddTarget(slice_5)
+
+  slice_1.AddTarget(features_1)
+  slice_2.AddTarget(features_2)
+  slice_3.AddTarget(features_3)
+  slice_4.AddTarget(features_4)
+  slice_5.AddTarget(features_5)
+
+  mod_gt.Initialize(input_sig)
+  
+  correct_count = 0;
+  incorrect_count  = 0;
+  
+  scaled_wave = []
+  for sample in input_wave:
+    scaled_wave.append(float(sample / float(pow(2,15) - 1)))
+  i = 0
+  
+  wave_chunks = grouper(buffer_length, scaled_wave, 0)
+
+  out_bmm = []
+  out_nap = []
+  out_smooth_nap_profile = []
+  out_strobes = []
+  out_sais = []
+  out_ssis = []
+  out_slice_1 = []
+  out_slice_2 = []
+  out_slice_3 = []
+  out_slice_4 = []
+  out_slice_5 = []
+  out_feat_1 = []
+  out_feat_2 = []
+  out_feat_3 = []
+  out_feat_4 = []
+  out_feat_5 = []
+  for chunk in wave_chunks:
+    i = 0
+    for sample in chunk:
+      input_sig.set_sample(0, i, float(sample))
+      i += 1
+    mod_gt.Process(input_sig)
+    
+    #out_bmm.append(BankToArray(mod_gt.GetOutputBank()))
+    #out_nap.append(BankToArray(mod_hl.GetOutputBank()))
+    out_smooth_nap_profile.append(BankToArray(mod_scaler.GetOutputBank()))
+    #out_strobes.append(BankToArray(mod_strobes.GetOutputBank()))
+    #out_sais.append(BankToArray(mod_sai.GetOutputBank()))
+    out_ssis.append(BankToArray(mod_ssi.GetOutputBank()))
+    out_slice_1.append(BankToArray(slice_1.GetOutputBank()))
+    out_slice_2.append(BankToArray(slice_2.GetOutputBank()))
+    out_slice_3.append(BankToArray(slice_3.GetOutputBank()))
+    out_slice_4.append(BankToArray(slice_4.GetOutputBank()))
+    out_slice_5.append(BankToArray(slice_5.GetOutputBank()))
+    out_feat_1.append(BankToArray(features_1.GetOutputBank()))
+    out_feat_2.append(BankToArray(features_2.GetOutputBank()))
+    out_feat_3.append(BankToArray(features_3.GetOutputBank()))
+    out_feat_4.append(BankToArray(features_4.GetOutputBank()))
+    out_feat_5.append(BankToArray(features_5.GetOutputBank()))
+  
+  out_bank = mod_gt.GetOutputBank()
+  channel_count = out_bank.channel_count()
+  cfs = scipy.zeros((channel_count))
+  for ch in range(0, channel_count):
+    cfs[ch] = out_bank.centre_frequency(ch)
+  outmat = dict(bmm=out_bmm, nap=out_nap, sais=out_sais,
+                ssis=out_ssis, slice1=out_slice_1, slice2=out_slice_2, 
+                slice3=out_slice_3, slice4=out_slice_4, slice5=out_slice_5,
+                feat1=out_feat_1, feat2=out_feat_2, feat3=out_feat_3,
+                feat4=out_feat_4, feat5=out_feat_5,
+                nap_smooth=out_smooth_nap_profile, centre_freqs=cfs)
+  io.savemat("src/Scripts/profile_out.mat", outmat, oned_as='column')
+
+  pass
+
+
+if __name__ == '__main__':
+  main()