comparison trunk/matlab/bmm/carfac/SmoothDoubleExponential.m @ 516:68c15d43fcc8

Added MATLAB code for Lyon's CAR-FAC filter cascade.
author tom@acousticscale.org
date Wed, 15 Feb 2012 21:26:40 +0000
parents
children 2b96cb7ea4f7
comparison
equal deleted inserted replaced
454:49b7b984e957 516:68c15d43fcc8
1 % Copyright 2012, Google, Inc.
2 % Author: Richard F. Lyon
3 %
4 % This Matlab file is part of an implementation of Lyon's cochlear model:
5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
7 %
8 % Licensed under the Apache License, Version 2.0 (the "License");
9 % you may not use this file except in compliance with the License.
10 % You may obtain a copy of the License at
11 %
12 % http://www.apache.org/licenses/LICENSE-2.0
13 %
14 % Unless required by applicable law or agreed to in writing, software
15 % distributed under the License is distributed on an "AS IS" BASIS,
16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 % See the License for the specific language governing permissions and
18 % limitations under the License.
19
20 function signal_vecs = SmoothDoubleExponential(signal_vecs, ...
21 polez1, polez2, fast_matlab_way)
22 % function signal_vecs = SmoothDoubleExponential(signal_vecs, ...
23 % polez1, polez2, fast_matlab_way)
24 %
25 % Smooth the input column vectors in signal_vecs using forward
26 % and backwards one-pole smoothing filters, backwards first, with
27 % approximately reflecting edge conditions.
28 %
29 % It will be done with Matlab's filter function if "fast_matlab_way"
30 % is nonzero or defaulted; use 0 to test the algorithm for how to do it
31 % in sequential c code.
32
33 if nargin < 4
34 fast_matlab_way = 1;
35 % can also use the slow way with explicit loop like we'll do in C++
36 end
37
38 if fast_matlab_way
39 [junk, Z_state] = filter(1-polez1, [1, -polez1], ...
40 signal_vecs((end-10):end, :)); % initialize state from 10 points
41 [signal_vecs(end:-1:1), Z_state] = filter(1-polez2, [1, -polez2], ...
42 signal_vecs(end:-1:1), Z_state*polez2/polez1);
43 signal_vecs = filter(1-polez1, [1, -polez1], signal_vecs, ...
44 Z_state*polez1/polez2);
45 else
46 npts = size(signal_vecs, 1);
47 state = zeros(size(signal_vecs, 2));
48 for index = npts-10:npts
49 input = signal_vecs(index, :);
50 state = state + (1 - polez1) * (input - state);
51 end
52 % smooth backward with polez2, starting with state from above:
53 for index = npts:-1:1
54 input = signal_vecs(index, :);
55 state = state + (1 - polez2) * (input - state);
56 signal_vecs(index, :) = state;
57 end
58 % smooth forward with polez1, starting with state from above:
59 for index = 1:npts
60 input = signal_vecs(index, :);
61 state = state + (1 - polez1) * (input - state);
62 signal_vecs(index, :) = state;
63 end
64 end