tomwalters@268
|
1 // Copyright 2007-2010, Thomas Walters
|
tomwalters@268
|
2 //
|
tomwalters@268
|
3 // AIM-C: A C++ implementation of the Auditory Image Model
|
tomwalters@268
|
4 // http://www.acousticscale.org/AIMC
|
tomwalters@268
|
5 //
|
tomwalters@318
|
6 // Licensed under the Apache License, Version 2.0 (the "License");
|
tomwalters@318
|
7 // you may not use this file except in compliance with the License.
|
tomwalters@318
|
8 // You may obtain a copy of the License at
|
tomwalters@268
|
9 //
|
tomwalters@318
|
10 // http://www.apache.org/licenses/LICENSE-2.0
|
tomwalters@268
|
11 //
|
tomwalters@318
|
12 // Unless required by applicable law or agreed to in writing, software
|
tomwalters@318
|
13 // distributed under the License is distributed on an "AS IS" BASIS,
|
tomwalters@318
|
14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
tomwalters@318
|
15 // See the License for the specific language governing permissions and
|
tomwalters@318
|
16 // limitations under the License.
|
tomwalters@268
|
17
|
tomwalters@268
|
18 /*!
|
tomwalters@268
|
19 * \file
|
tomwalters@268
|
20 * \brief Halfwave rectification, compression and lowpass filtering.
|
tomwalters@268
|
21 *
|
tomwalters@283
|
22 * \author Thomas Walters <tom@acousticscale.org>
|
tomwalters@268
|
23 * \date created 2007/03/07
|
tomwalters@296
|
24 * \version \$Id$
|
tomwalters@268
|
25 */
|
tomwalters@268
|
26
|
tomwalters@287
|
27 #include <cmath>
|
tomwalters@268
|
28
|
tomwalters@268
|
29 #include "Modules/NAP/ModuleHCL.h"
|
tomwalters@268
|
30
|
tomwalters@268
|
31 namespace aimc {
|
tomwalters@268
|
32 ModuleHCL::ModuleHCL(Parameters *parameters) : Module(parameters) {
|
tomwalters@268
|
33 module_identifier_ = "hcl";
|
tomwalters@268
|
34 module_type_ = "nap";
|
tomwalters@268
|
35 module_description_ = "Halfwave rectification, compression "
|
tomwalters@268
|
36 "and lowpass filtering";
|
tomwalters@296
|
37 module_version_ = "$Id$";
|
tomwalters@268
|
38
|
tomwalters@290
|
39 do_lowpass_ = parameters_->DefaultBool("nap.do_lowpass", true);
|
tomwalters@273
|
40 do_log_ = parameters_->DefaultBool("nap.do_log_compression", false);
|
tomwalters@273
|
41 lowpass_cutoff_ = parameters_->DefaultFloat("nap.lowpass_cutoff", 1200.0);
|
tomwalters@273
|
42 lowpass_order_ = parameters_->DefaultInt("nap.lowpass_order", 2);
|
tomwalters@268
|
43 }
|
tomwalters@268
|
44
|
tomwalters@268
|
45 ModuleHCL::~ModuleHCL() {
|
tomwalters@268
|
46 }
|
tomwalters@268
|
47
|
tomwalters@268
|
48 bool ModuleHCL::InitializeInternal(const SignalBank &input) {
|
tomwalters@268
|
49 time_constant_ = 1.0f / (2.0f * M_PI * lowpass_cutoff_);
|
tomwalters@268
|
50 channel_count_ = input.channel_count();
|
tomwalters@268
|
51 output_.Initialize(input);
|
tomwalters@275
|
52 ResetInternal();
|
tomwalters@268
|
53 return true;
|
tomwalters@268
|
54 }
|
tomwalters@268
|
55
|
tomwalters@275
|
56 void ModuleHCL::ResetInternal() {
|
tomwalters@268
|
57 xn_ = 0.0f;
|
tomwalters@268
|
58 yn_ = 0.0f;
|
tomwalters@268
|
59 yns_.clear();
|
tomwalters@268
|
60 yns_.resize(channel_count_);
|
tomwalters@268
|
61 for (int c = 0; c < channel_count_; ++c) {
|
tomwalters@268
|
62 yns_[c].resize(lowpass_order_, 0.0f);
|
tomwalters@268
|
63 }
|
tomwalters@268
|
64 }
|
tomwalters@268
|
65
|
tomwalters@268
|
66 /* With do_log, the signal is first scaled up so that values <1.0 become
|
tomwalters@268
|
67 * negligible. This just rescales the sample values to fill the range of a
|
tomwalters@268
|
68 * 16-bit signed integer, then we lose the bottom bit of resolution. If the
|
tomwalters@268
|
69 * signal was sampled at 16-bit resolution, there shouldn't be anything to
|
tomwalters@268
|
70 * speak of there anyway. If it was sampled using a higher resolution, then
|
tomwalters@268
|
71 * some data will be discarded.
|
tomwalters@268
|
72 */
|
tomwalters@268
|
73 void ModuleHCL::Process(const SignalBank &input) {
|
tomwalters@268
|
74 output_.set_start_time(input.start_time());
|
tomwalters@268
|
75 for (int c = 0; c < input.channel_count(); ++c) {
|
tomwalters@268
|
76 for (int i = 0; i < input.buffer_length(); ++i) {
|
tomwalters@268
|
77 if (input[c][i] < 0.0f) {
|
tomwalters@268
|
78 output_.set_sample(c, i, 0.0f);
|
tomwalters@268
|
79 } else {
|
tomwalters@268
|
80 float s = input[c][i];
|
tomwalters@268
|
81 if (do_log_) {
|
tomwalters@280
|
82 s *= pow(2.0f, 15);
|
tomwalters@268
|
83 if (s < 1.0f) s = 1.0f;
|
tomwalters@268
|
84 s = 20.0f * log10(s);
|
tomwalters@268
|
85 }
|
tomwalters@268
|
86 output_.set_sample(c, i, s);
|
tomwalters@268
|
87 }
|
tomwalters@268
|
88 }
|
tomwalters@268
|
89 if (do_lowpass_) {
|
tomwalters@280
|
90 float b = exp(-1.0f / (input.sample_rate() * time_constant_));
|
tomwalters@268
|
91 float gain = 1.0f / (1.0f - b);
|
tomwalters@268
|
92 for (int j = 0; j < lowpass_order_; j++) {
|
tomwalters@268
|
93 for (int k = 0; k < output_.buffer_length(); ++k) {
|
tomwalters@268
|
94 xn_ = output_[c][k];
|
tomwalters@268
|
95 yn_ = xn_ + b * yns_[c][j];
|
tomwalters@268
|
96 yns_[c][j] = yn_;
|
tomwalters@268
|
97 output_.set_sample(c, k, yn_ / gain);
|
tomwalters@268
|
98 }
|
tomwalters@268
|
99 }
|
tomwalters@268
|
100 }
|
tomwalters@268
|
101 }
|
tomwalters@268
|
102 PushOutput();
|
tomwalters@268
|
103 }
|
tomwalters@268
|
104 } // namespace aimc
|