annotate trunk/C++/AGC.C @ 706:f8e90b5d85fd tip

Delete CARFAC code from this repository. It has been moved to https://github.com/google/carfac Please email me with your github username to get access. I've also created a new mailing list to discuss CARFAC development: https://groups.google.com/forum/#!forum/carfac-dev
author ronw@google.com
date Thu, 18 Jul 2013 20:56:51 +0000
parents 33c6f1921171
children
rev   line source
flatmax@674 1
flatmax@598 2 // Author Matt Flax <flatmax@>
flatmax@597 3 //
flatmax@597 4 // This C++ file is part of an implementation of Lyon's cochlear model:
flatmax@597 5 // "Cascade of Asymmetric Resonators with Fast-Acting Compression"
flatmax@597 6 // to supplement Lyon's upcoming book "Human and Machine Hearing"
flatmax@597 7 //
flatmax@597 8 // Licensed under the Apache License, Version 2.0 (the "License");
flatmax@597 9 // you may not use this file except in compliance with the License.
flatmax@597 10 // You may obtain a copy of the License at
flatmax@597 11 //
flatmax@597 12 // http://www.apache.org/licenses/LICENSE-2.0
flatmax@597 13 //
flatmax@597 14 // Unless required by applicable law or agreed to in writing, software
flatmax@597 15 // distributed under the License is distributed on an "AS IS" BASIS,
flatmax@597 16 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
flatmax@597 17 // See the License for the specific language governing permissions and
flatmax@597 18 // limitations under the License.
flatmax@597 19 /**
flatmax@597 20 \author {Matt Flax <flatmax\@>}
flatmax@597 21 \date 2013.02.08
flatmax@597 22 */
flatmax@597 23
flatmax@597 24 #include "AGC.H"
flatmax@597 25
flatmax@612 26 AGC::AGC() {
flatmax@597 27 }
flatmax@597 28
flatmax@612 29 AGC::~AGC() {
flatmax@597 30 }
flatmax@612 31
flatmax@612 32 void AGC::designAGC(FP_TYPE fs, int n_ch) {
flatmax@612 33 int n_AGC_stages = params.n_stages;
flatmax@612 34 //AGC_coeffs = struct( ...
flatmax@612 35 // 'n_ch', n_ch, ...
flatmax@612 36 // 'n_AGC_stages', n_AGC_stages, ...
flatmax@612 37 // 'AGC_stage_gain', AGC_params.AGC_stage_gain);
flatmax@612 38
flatmax@612 39 // AGC1 pass is smoothing from base toward apex;
flatmax@612 40 // AGC2 pass is back, which is done first now (in double exp. version)
flatmax@612 41 //AGC1_scales = AGC_params.AGC1_scales;
flatmax@612 42 //AGC2_scales = AGC_params.AGC2_scales;
flatmax@612 43
flatmax@612 44 coeffs.AGC_epsilon = Array<FP_TYPE, 1, Dynamic>::Zero(1, n_AGC_stages); // the 1/(tau*fs) roughly
flatmax@612 45 FP_TYPE decim = 1.;
flatmax@612 46 //AGC_coeffs.decimation = AGC_params.decimation;
flatmax@612 47
flatmax@612 48 FP_TYPE total_DC_gain = 0.;
flatmax@612 49 for (int stage = 1; stage<=n_AGC_stages; stage++) {
flatmax@612 50 FP_TYPE tau = params.time_constants(stage-1); // time constant in seconds
flatmax@612 51 decim = decim * params.decimation(stage-1); // net decim to this stage
flatmax@612 52 // epsilon is how much new input to take at each update step:
flatmax@612 53 coeffs.AGC_epsilon(stage-1) = 1. - exp(-decim / (tau * fs));
flatmax@612 54 // effective number of smoothings in a time constant:
flatmax@612 55 FP_TYPE ntimes = tau * (fs / decim); // typically 5 to 50
flatmax@612 56
flatmax@612 57 // decide on target spread (variance) and delay (mean) of impulse
flatmax@612 58 // response as a distribution to be convolved ntimes:
flatmax@612 59 // TODO (dicklyon): specify spread and delay instead of scales???
flatmax@612 60 FP_TYPE delay = (param.AGC2_scales(stage-1) - param.AGC1_scales(stage-1)) / ntimes;
flatmax@612 61 FP_TYPE spread_sq = (param.AGC1_scales(stage-1).pow(2.) + param.AGC2_scales(stage-1).pow(2)) / ntimes;
flatmax@612 62
flatmax@612 63 // get pole positions to better match intended spread and delay of
flatmax@612 64 // [[geometric distribution]] in each direction (see wikipedia)
flatmax@612 65 FP_TYPE u = 1. + 1. / spread_sq; // these are based on off-line algebra hacking.
flatmax@612 66 FP_TYPE p = u - sqrt(pow(u,2.) - 1.); // pole that would give spread if used twice.
flatmax@612 67 FP_TYPE dp = delay * (1. - 2.*p +pow(p,2.))/2.;
flatmax@612 68 FP_TYPE polez1 = p - dp;
flatmax@612 69 FP_TYPE polez2 = p + dp;
flatmax@612 70 coeffs.AGC_polez1(stage) = polez1;
flatmax@612 71 coeffs.AGC_polez2(stage) = polez2;
flatmax@612 72
flatmax@612 73 // try a 3- or 5-tap FIR as an alternative to the double exponential:
flatmax@612 74 Array<FP_TYPE,1, Dynamic> AGC_spatial_FIR;
flatmax@612 75 int n_taps = 0;
flatmax@612 76 int FIR_OK = 0;
flatmax@612 77 int n_iterations = 1;
flatmax@612 78 while (~FIR_OK) {
flatmax@612 79 switch (n_taps) {
flatmax@612 80 case 0:
flatmax@612 81 // first attempt a 3-point FIR to apply once:
flatmax@612 82 n_taps = 3;
flatmax@612 83 break;
flatmax@612 84 case 3:
flatmax@612 85 // second time through, go wider but stick to 1 iteration
flatmax@612 86 n_taps = 5;
flatmax@612 87 break;
flatmax@612 88 case 5:
flatmax@612 89 // apply FIR multiple times instead of going wider:
flatmax@612 90 n_iterations = n_iterations + 1;
flatmax@612 91 if (n_iterations > 16) {
flatmax@612 92 cerr<<"Too many n_iterations in CARFAC_DesignAGC"<<endl;
flatmax@612 93 exit(AGC_DESIGN_ITERATION_ERROR);
flatmax@612 94 }
flatmax@612 95 break;
flatmax@612 96 default:
flatmax@612 97 // to do other n_taps would need changes in CARFAC_Spatial_Smooth
flatmax@612 98 // and in Design_FIR_coeffs
flatmax@612 99 cerr<<"Bad n_taps in CARFAC_DesignAGC"<<endl;
flatmax@612 100 exit(AGC_DESIGN_TAPS_OOB_ERROR);
flatmax@612 101 break;
flatmax@612 102 }
flatmax@612 103 FIR_OK = Design_FIR_coeffs(n_taps, spread_sq, delay, n_iterations,AGC_spatial_FIR);
flatmax@612 104 }
flatmax@612 105 // when FIR_OK, store the resulting FIR design in coeffs:
flatmax@612 106 coeff.AGC_spatial_iterations(stage-1) = n_iterations;
flatmax@612 107 coeff.AGC_spatial_FIR.col(stage-1).block(0,AGC_spatial_FIR.size()) = AGC_spatial_FIR;
flatmax@612 108 coeff.AGC_spatial_n_taps(stage-1) = n_taps;
flatmax@612 109
flatmax@612 110 // accumulate DC gains from all the stages, accounting for stage_gain:
flatmax@612 111 total_DC_gain = total_DC_gain + params.AGC_stage_gain.pow(stage-1);
flatmax@612 112
flatmax@612 113 // TODO (dicklyon) -- is this the best binaural mixing plan?
flatmax@612 114 if (stage == 1)
flatmax@612 115 coeff.AGC_mix_coeffs(stage-1) = 0.;
flatmax@612 116 else
flatmax@612 117 coeff.AGC_mix_coeffs(stage-1) = param.AGC_mix_coeff / (tau * (fs / decim));
flatmax@612 118 }
flatmax@612 119
flatmax@612 120 coeff.AGC_gain = total_DC_gain;
flatmax@612 121
flatmax@612 122 // adjust the detect_scale to be the reciprocal DC gain of the AGC filters:
flatmax@612 123 AGC_coeffs.detect_scale = 1. / total_DC_gain;
flatmax@612 124
flatmax@612 125 }
flatmax@612 126
flatmax@612 127 int OK AGC::Design_FIR_coeffs(int n_taps, FP_TYPE var, FP_TYPE mn, int n_iter, Array<FP_TYPE,Dynamic,1> &FIR) {
flatmax@612 128 // reduce mean and variance of smoothing distribution by n_iterations:
flatmax@612 129 mn = mn / (FP_TYPE)n_iter;
flatmax@612 130 var = var / (FP_TYPE)n_iter;
flatmax@612 131 switch (n_taps) {
flatmax@612 132 case 3:
flatmax@612 133 // based on solving to match mean and variance of [a, 1-a-b, b]:
flatmax@612 134 a = (var + mn*mn - mn) / 2.;
flatmax@612 135 b = (var + mn*mn + mn) / 2.;
flatmax@612 136 FIR.resize(3,1);
flatmax@612 137 FIR<<a, 1. - a - b, b;
flatmax@612 138 OK = FIR(2) >= 0.2;
flatmax@612 139 case 5
flatmax@612 140 // based on solving to match [a/2, a/2, 1-a-b, b/2, b/2]:
flatmax@612 141 a = ((var + mn*mn)*2./5. - mn*2./3.) / 2.;
flatmax@612 142 b = ((var + mn*mn)*2./5. + mn*2./3.) / 2.;
flatmax@612 143 // first and last coeffs are implicitly duplicated to make 5-point FIR:
flatmax@612 144 FIR.resize(5,1);
flatmax@612 145 FIR<<a/2., 1. - a - b, b/2.;
flatmax@612 146 OK = FIR(2) >= 0.1;
flatmax@612 147 default:
flatmax@612 148 cerr<<"Bad n_taps in AGC_spatial_FIR"<<endl;
flatmax@612 149 exit(AGC_FIR_TAP_COUNT_ERROR);
flatmax@612 150 }
flatmax@612 151 }