annotate trunk/src/Modules/BMM/ModulePZFC.cc @ 304:e4f704f67ca6

-Typo in file path
author tomwalters
date Wed, 24 Feb 2010 15:18:00 +0000
parents fe5ce00a64f5
children 994b84cb5974
rev   line source
tomwalters@268 1 // Copyright 2008-2010, Thomas Walters
tomwalters@268 2 //
tomwalters@268 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@268 4 // http://www.acousticscale.org/AIMC
tomwalters@268 5 //
tomwalters@268 6 // This program is free software: you can redistribute it and/or modify
tomwalters@268 7 // it under the terms of the GNU General Public License as published by
tomwalters@268 8 // the Free Software Foundation, either version 3 of the License, or
tomwalters@268 9 // (at your option) any later version.
tomwalters@268 10 //
tomwalters@268 11 // This program is distributed in the hope that it will be useful,
tomwalters@268 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
tomwalters@268 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
tomwalters@268 14 // GNU General Public License for more details.
tomwalters@268 15 //
tomwalters@268 16 // You should have received a copy of the GNU General Public License
tomwalters@268 17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
tomwalters@268 18
tomwalters@268 19 /*! \file
tomwalters@268 20 * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented as an AIM-C
tomwalters@268 21 * module by Tom Walters from the AIM-MAT module based on Dick Lyon's code
tomwalters@268 22 */
tomwalters@268 23
tomwalters@268 24 /*! \author Thomas Walters <tom@acousticscale.org>
tomwalters@268 25 * \date created 2008/02/05
tomwalters@296 26 * \version \$Id$
tomwalters@268 27 */
tomwalters@268 28
tomwalters@268 29 #include "Support/ERBTools.h"
tomwalters@268 30
tomwalters@268 31 #include "Modules/BMM/ModulePZFC.h"
tomwalters@268 32
tomwalters@268 33 namespace aimc {
tomwalters@268 34 ModulePZFC::ModulePZFC(Parameters *parameters) : Module(parameters) {
tomwalters@268 35 module_identifier_ = "pzfc";
tomwalters@268 36 module_type_ = "bmm";
tomwalters@268 37 module_description_ = "Pole-Zero Filter Cascade";
tomwalters@296 38 module_version_ = "$Id$";
tomwalters@268 39
tomwalters@268 40 // Get parameter values, setting default values where necessary
tomwalters@268 41 // Each parameter is set here only if it has not already been set elsewhere.
tomwalters@268 42 cf_max_ = parameters_->DefaultFloat("pzfc.highest_frequency", 6000.0f);
tomwalters@268 43 cf_min_ = parameters_->DefaultFloat("pzfc.lowest_frequency", 100.0f);
tomwalters@268 44 pole_damping_ = parameters_->DefaultFloat("pzfc.pole_damping", 0.12f);
tomwalters@268 45 zero_damping_ = parameters_->DefaultFloat("pzfc.zero_damping", 0.2f);
tomwalters@268 46 zero_factor_ = parameters_->DefaultFloat("pzfc.zero_factor", 1.4f);
tomwalters@268 47 step_factor_ = parameters_->DefaultFloat("pzfc.step_factor", 1.0f/3.0f);
tomwalters@268 48 bandwidth_over_cf_ = parameters_->DefaultFloat("pzfc.bandwidth_over_cf",
tomwalters@268 49 0.11f);
tomwalters@268 50 min_bandwidth_hz_ = parameters_->DefaultFloat("pzfc.min_bandwidth_hz",
tomwalters@268 51 27.0f);
tomwalters@268 52 agc_factor_ = parameters_->DefaultFloat("pzfc.agc_factor", 12.0f);
tomwalters@268 53 do_agc_step_ = parameters_->DefaultBool("pzfc.do_agc", true);
tomwalters@268 54
tomwalters@268 55 detect_.resize(0);
tomwalters@268 56 }
tomwalters@268 57
tomwalters@268 58 ModulePZFC::~ModulePZFC() {
tomwalters@268 59 }
tomwalters@268 60
tomwalters@268 61 bool ModulePZFC::InitializeInternal(const SignalBank &input) {
tomwalters@268 62 // Make local convenience copies of some variables
tomwalters@268 63 sample_rate_ = input.sample_rate();
tomwalters@268 64 buffer_length_ = input.buffer_length();
tomwalters@268 65 channel_count_ = 0;
tomwalters@268 66
tomwalters@268 67 // Prepare the coefficients and also the output SignalBank
tomwalters@268 68 if (!SetPZBankCoeffs())
tomwalters@268 69 return false;
tomwalters@268 70
tomwalters@268 71 // The output signal bank should be set up by now.
tomwalters@268 72 if (!output_.initialized())
tomwalters@268 73 return false;
tomwalters@268 74
tomwalters@268 75 // This initialises all buffers which can be modified by Process()
tomwalters@275 76 ResetInternal();
tomwalters@268 77
tomwalters@268 78 return true;
tomwalters@268 79 }
tomwalters@268 80
tomwalters@275 81 void ModulePZFC::ResetInternal() {
tomwalters@268 82 // These buffers may be actively modified by the algorithm
tomwalters@268 83 agc_state_.clear();
tomwalters@268 84 agc_state_.resize(channel_count_);
tomwalters@268 85 for (int i = 0; i < channel_count_; ++i) {
tomwalters@268 86 agc_state_[i].clear();
tomwalters@268 87 agc_state_[i].resize(agc_stage_count_, 0.0f);
tomwalters@268 88 }
tomwalters@268 89
tomwalters@268 90 state_1_.clear();
tomwalters@268 91 state_1_.resize(channel_count_, 0.0f);
tomwalters@268 92
tomwalters@268 93 state_2_.clear();
tomwalters@268 94 state_2_.resize(channel_count_, 0.0f);
tomwalters@268 95
tomwalters@268 96 previous_out_.clear();
tomwalters@268 97 previous_out_.resize(channel_count_, 0.0f);
tomwalters@268 98
tomwalters@268 99 pole_damps_mod_.clear();
tomwalters@268 100 pole_damps_mod_.resize(channel_count_, 0.0f);
tomwalters@268 101
tomwalters@268 102 inputs_.clear();
tomwalters@268 103 inputs_.resize(channel_count_, 0.0f);
tomwalters@268 104
tomwalters@268 105 // Init AGC
tomwalters@268 106 AGCDampStep();
tomwalters@268 107 // pole_damps_mod_ and agc_state_ are now be initialized
tomwalters@268 108
tomwalters@268 109 // Modify the pole dampings and AGC state slightly from their values in
tomwalters@268 110 // silence in case the input is abuptly loud.
tomwalters@268 111 for (int i = 0; i < channel_count_; ++i) {
tomwalters@268 112 pole_damps_mod_[i] += 0.05f;
tomwalters@268 113 for (int j = 0; j < agc_stage_count_; ++j)
tomwalters@268 114 agc_state_[i][j] += 0.05f;
tomwalters@268 115 }
tomwalters@268 116
tomwalters@268 117 last_input_ = 0.0f;
tomwalters@268 118 }
tomwalters@268 119
tomwalters@268 120 bool ModulePZFC::SetPZBankCoeffsERBFitted() {
tomwalters@268 121 float parameter_values[3 * 7] = {
tomwalters@268 122 // Filed, Nfit = 524, 11-3 parameters, PZFC, cwt 0, fit time 9915 sec
tomwalters@268 123 1.14827, 0.00000, 0.00000, // % SumSqrErr= 10125.41
tomwalters@268 124 0.53571, -0.70128, 0.63246, // % RMSErr = 2.81586
tomwalters@268 125 0.76779, 0.00000, 0.00000, // % MeanErr = 0.00000
tomwalters@268 126 // Inf 0.00000 0.00000 % RMSCost = NaN
tomwalters@268 127 0.00000, 0.00000, 0.00000,
tomwalters@268 128 6.00000, 0.00000, 0.00000,
tomwalters@268 129 1.08869, -0.09470, 0.07844,
tomwalters@268 130 10.56432, 2.52732, 1.86895
tomwalters@268 131 // -3.45865 -1.31457 3.91779 % Kv
tomwalters@268 132 };
tomwalters@268 133
tomwalters@268 134 // Precalculate the number of channels required - this method is ugly but it
tomwalters@268 135 // was the quickest way of converting from MATLAB as the step factor between
tomwalters@268 136 // channels can vary quadratically with pole frequency...
tomwalters@268 137
tomwalters@268 138 // Normalised maximum pole frequency
tomwalters@268 139 float pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@268 140
tomwalters@268 141 channel_count_ = 0;
tomwalters@268 142 while ((pole_frequency / (2.0f * M_PI)) * sample_rate_ > cf_min_) {
tomwalters@268 143 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@268 144 float f_dep = ERBTools::Freq2ERB(frequency)
tomwalters@268 145 / ERBTools::Freq2ERB(1000.0f) - 1.0f;
tomwalters@268 146 float bw = ERBTools::Freq2ERBw(pole_frequency
tomwalters@268 147 / (2.0f * M_PI) * sample_rate_);
tomwalters@268 148 float step_factor = 1.0f
tomwalters@268 149 / (parameter_values[4*3] + parameter_values[4 * 3 + 1]
tomwalters@268 150 * f_dep + parameter_values[4 * 3 + 2] * f_dep * f_dep); // 1/n2
tomwalters@268 151 pole_frequency -= step_factor * (bw * (2.0f * M_PI) / sample_rate_);
tomwalters@268 152 channel_count_++;
tomwalters@268 153 }
tomwalters@268 154
tomwalters@268 155 // Now the number of channels is known, various buffers for the filterbank
tomwalters@268 156 // coefficients can be initialised
tomwalters@268 157 pole_dampings_.clear();
tomwalters@268 158 pole_dampings_.resize(channel_count_, 0.0f);
tomwalters@268 159 pole_frequencies_.clear();
tomwalters@268 160 pole_frequencies_.resize(channel_count_, 0.0f);
tomwalters@268 161
tomwalters@268 162 // Direct-form coefficients
tomwalters@268 163 za0_.clear();
tomwalters@268 164 za0_.resize(channel_count_, 0.0f);
tomwalters@268 165 za1_.clear();
tomwalters@268 166 za1_.resize(channel_count_, 0.0f);
tomwalters@268 167 za2_.clear();
tomwalters@268 168 za2_.resize(channel_count_, 0.0f);
tomwalters@268 169
tomwalters@268 170 // The output signal bank
tomwalters@268 171 output_.Initialize(channel_count_, buffer_length_, sample_rate_);
tomwalters@268 172
tomwalters@268 173 // Reset the pole frequency to maximum
tomwalters@268 174 pole_frequency = cf_max_ / sample_rate_ * (2.0f * M_PI);
tomwalters@268 175
tomwalters@268 176 for (int i = channel_count_ - 1; i > -1; --i) {
tomwalters@268 177 // Store the normalised pole frequncy
tomwalters@268 178 pole_frequencies_[i] = pole_frequency;
tomwalters@268 179
tomwalters@268 180 // Calculate the real pole frequency from the normalised pole frequency
tomwalters@268 181 float frequency = pole_frequency / (2.0f * M_PI) * sample_rate_;
tomwalters@268 182
tomwalters@268 183 // Store the real pole frequency as the 'centre frequency' of the filterbank
tomwalters@268 184 // channel
tomwalters@268 185 output_.set_centre_frequency(i, frequency);
tomwalters@268 186
tomwalters@268 187 // From PZFC_Small_Signal_Params.m { From PZFC_Params.m {
tomwalters@268 188 float DpndF = ERBTools::Freq2ERB(frequency)
tomwalters@268 189 / ERBTools::Freq2ERB(1000.0f) - 1.0f;
tomwalters@268 190
tomwalters@268 191 float p[8]; // Parameters (short name for ease of reading)
tomwalters@268 192
tomwalters@268 193 // Use parameter_values to recover the parameter values for this frequency
tomwalters@268 194 for (int param = 0; param < 7; ++param)
tomwalters@268 195 p[param] = parameter_values[param * 3]
tomwalters@268 196 + parameter_values[param * 3 + 1] * DpndF
tomwalters@268 197 + parameter_values[param * 3 + 2] * DpndF * DpndF;
tomwalters@268 198
tomwalters@268 199 // Calculate the final parameter
tomwalters@268 200 p[7] = p[1] * pow(10.0f, (p[2] / (p[1] * p[4])) * (p[6] - 60.0f) / 20.0f);
tomwalters@268 201 if (p[7] < 0.2f)
tomwalters@268 202 p[7] = 0.2f;
tomwalters@268 203
tomwalters@268 204 // Nominal bandwidth at this frequency
tomwalters@268 205 float fERBw = ERBTools::Freq2ERBw(frequency);
tomwalters@268 206
tomwalters@268 207 // Pole bandwidth
tomwalters@268 208 float fPBW = ((p[7] * fERBw * (2 * M_PI) / sample_rate_) / 2)
tomwalters@268 209 * pow(p[4], 0.5f);
tomwalters@268 210
tomwalters@268 211 // Pole damping
tomwalters@268 212 float pole_damping = fPBW / sqrt(pow(pole_frequency, 2) + pow(fPBW, 2));
tomwalters@268 213
tomwalters@268 214 // Store the pole damping
tomwalters@268 215 pole_dampings_[i] = pole_damping;
tomwalters@268 216
tomwalters@268 217 // Zero bandwidth
tomwalters@268 218 float fZBW = ((p[0] * p[5] * fERBw * (2 * M_PI) / sample_rate_) / 2)
tomwalters@268 219 * pow(p[4], 0.5f);
tomwalters@268 220
tomwalters@268 221 // Zero frequency
tomwalters@268 222 float zero_frequency = p[5] * pole_frequency;
tomwalters@268 223
tomwalters@268 224 if (zero_frequency > M_PI)
tomwalters@268 225 LOG_ERROR(_T("Warning: Zero frequency is above the Nyquist frequency "
tomwalters@268 226 "in ModulePZFC(), continuing anyway but results may not "
tomwalters@268 227 "be accurate."));
tomwalters@268 228
tomwalters@268 229 // Zero damping
tomwalters@268 230 float fZDamp = fZBW / sqrt(pow(zero_frequency, 2) + pow(fZBW, 2));
tomwalters@268 231
tomwalters@268 232 // Impulse-invariance mapping
tomwalters@268 233 float fZTheta = zero_frequency * sqrt(1.0f - pow(fZDamp, 2));
tomwalters@268 234 float fZRho = exp(-fZDamp * zero_frequency);
tomwalters@268 235
tomwalters@268 236 // Direct-form coefficients
tomwalters@268 237 float fA1 = -2.0f * fZRho * cos(fZTheta);
tomwalters@268 238 float fA2 = fZRho * fZRho;
tomwalters@268 239
tomwalters@268 240 // Normalised to unity gain at DC
tomwalters@268 241 float fASum = 1.0f + fA1 + fA2;
tomwalters@268 242 za0_[i] = 1.0f / fASum;
tomwalters@268 243 za1_[i] = fA1 / fASum;
tomwalters@268 244 za2_[i] = fA2 / fASum;
tomwalters@268 245
tomwalters@268 246 // Subtract step factor (1/n2) times current bandwidth from the pole
tomwalters@268 247 // frequency
tomwalters@268 248 pole_frequency -= ((1.0f / p[4])
tomwalters@268 249 * (fERBw * (2.0f * M_PI) / sample_rate_));
tomwalters@268 250 }
tomwalters@268 251 return true;
tomwalters@268 252 }
tomwalters@268 253
tomwalters@268 254 bool ModulePZFC::SetPZBankCoeffs() {
tomwalters@268 255 /*! \todo Re-implement the alternative parameter settings
tomwalters@268 256 */
tomwalters@268 257 if (!SetPZBankCoeffsERBFitted())
tomwalters@268 258 return false;
tomwalters@268 259
tomwalters@268 260 /*! \todo Make fMindamp and fMaxdamp user-settable?
tomwalters@268 261 */
tomwalters@268 262 mindamp_ = 0.18f;
tomwalters@268 263 maxdamp_ = 0.4f;
tomwalters@268 264
tomwalters@268 265 rmin_.resize(channel_count_);
tomwalters@268 266 rmax_.resize(channel_count_);
tomwalters@268 267 xmin_.resize(channel_count_);
tomwalters@268 268 xmax_.resize(channel_count_);
tomwalters@268 269
tomwalters@268 270 for (int c = 0; c < channel_count_; ++c) {
tomwalters@268 271 // Calculate maximum and minimum damping options
tomwalters@268 272 rmin_[c] = exp(-mindamp_ * pole_frequencies_[c]);
tomwalters@268 273 rmax_[c] = exp(-maxdamp_ * pole_frequencies_[c]);
tomwalters@268 274
tomwalters@268 275 xmin_[c] = rmin_[c] * cos(pole_frequencies_[c]
tomwalters@268 276 * pow((1-pow(mindamp_, 2)), 0.5f));
tomwalters@268 277 xmax_[c] = rmax_[c] * cos(pole_frequencies_[c]
tomwalters@268 278 * pow((1-pow(maxdamp_, 2)), 0.5f));
tomwalters@268 279 }
tomwalters@268 280
tomwalters@268 281 // Set up AGC parameters
tomwalters@268 282 agc_stage_count_ = 4;
tomwalters@268 283 agc_epsilons_.resize(agc_stage_count_);
tomwalters@268 284 agc_epsilons_[0] = 0.0064f;
tomwalters@268 285 agc_epsilons_[1] = 0.0016f;
tomwalters@268 286 agc_epsilons_[2] = 0.0004f;
tomwalters@268 287 agc_epsilons_[3] = 0.0001f;
tomwalters@268 288
tomwalters@268 289 agc_gains_.resize(agc_stage_count_);
tomwalters@268 290 agc_gains_[0] = 1.0f;
tomwalters@268 291 agc_gains_[1] = 1.4f;
tomwalters@268 292 agc_gains_[2] = 2.0f;
tomwalters@268 293 agc_gains_[3] = 2.8f;
tomwalters@268 294
tomwalters@268 295 float mean_agc_gain = 0.0f;
tomwalters@268 296 for (int c = 0; c < agc_stage_count_; ++c)
tomwalters@268 297 mean_agc_gain += agc_gains_[c];
tomwalters@268 298 mean_agc_gain /= static_cast<float>(agc_stage_count_);
tomwalters@268 299
tomwalters@268 300 for (int c = 0; c < agc_stage_count_; ++c)
tomwalters@268 301 agc_gains_[c] /= mean_agc_gain;
tomwalters@268 302
tomwalters@268 303 return true;
tomwalters@268 304 }
tomwalters@268 305
tomwalters@268 306 void ModulePZFC::AGCDampStep() {
tomwalters@268 307 if (detect_.size() == 0) {
tomwalters@268 308 // If detect_ is not initialised, it means that the AGC is not set up.
tomwalters@268 309 // Set up now.
tomwalters@268 310 /*! \todo Make a separate InitAGC function which does this.
tomwalters@268 311 */
tomwalters@268 312 detect_.resize(channel_count_);
tomwalters@268 313 for (int c = 0; c < channel_count_; ++c)
tomwalters@268 314 detect_[c] = 1.0f;
tomwalters@268 315
tomwalters@268 316 float fDetectZero = DetectFun(0.0f);
tomwalters@268 317 for (int c = 0; c < channel_count_; c++)
tomwalters@268 318 detect_[c] *= fDetectZero;
tomwalters@268 319
tomwalters@268 320 for (int c = 0; c < channel_count_; c++)
tomwalters@268 321 for (int st = 0; st < agc_stage_count_; st++)
tomwalters@268 322 agc_state_[c][st] = (1.2f * detect_[c] * agc_gains_[st]);
tomwalters@268 323 }
tomwalters@268 324
tomwalters@268 325 float fAGCEpsLeft = 0.3f;
tomwalters@268 326 float fAGCEpsRight = 0.3f;
tomwalters@268 327
tomwalters@268 328 for (int c = channel_count_ - 1; c > -1; --c) {
tomwalters@268 329 for (int st = 0; st < agc_stage_count_; ++st) {
tomwalters@268 330 // This bounds checking is ugly and wasteful, and in an inner loop.
tomwalters@268 331 // If this algorithm is slow, this is why!
tomwalters@268 332 /*! \todo Proper non-ugly bounds checking in AGCDampStep()
tomwalters@268 333 */
tomwalters@268 334 float fPrevAGCState;
tomwalters@268 335 float fCurrAGCState;
tomwalters@268 336 float fNextAGCState;
tomwalters@268 337
tomwalters@268 338 if (c < channel_count_ - 1)
tomwalters@268 339 fPrevAGCState = agc_state_[c + 1][st];
tomwalters@268 340 else
tomwalters@268 341 fPrevAGCState = agc_state_[c][st];
tomwalters@268 342
tomwalters@268 343 fCurrAGCState = agc_state_[c][st];
tomwalters@268 344
tomwalters@268 345 if (c > 0)
tomwalters@268 346 fNextAGCState = agc_state_[c - 1][st];
tomwalters@268 347 else
tomwalters@268 348 fNextAGCState = agc_state_[c][st];
tomwalters@268 349
tomwalters@268 350 // Spatial smoothing
tomwalters@268 351 /*! \todo Something odd is going on here
tomwalters@268 352 * I think this line is not quite right.
tomwalters@268 353 */
tomwalters@268 354 float agc_avg = fAGCEpsLeft * fPrevAGCState
tomwalters@268 355 + (1.0f - fAGCEpsLeft - fAGCEpsRight) * fCurrAGCState
tomwalters@268 356 + fAGCEpsRight * fNextAGCState;
tomwalters@268 357 // Temporal smoothing
tomwalters@268 358 agc_state_[c][st] = agc_avg * (1.0f - agc_epsilons_[st])
tomwalters@268 359 + agc_epsilons_[st] * detect_[c] * agc_gains_[st];
tomwalters@268 360 }
tomwalters@268 361 }
tomwalters@268 362
tomwalters@268 363 float fOffset = 1.0f - agc_factor_ * DetectFun(0.0f);
tomwalters@268 364
tomwalters@268 365 for (int i = 0; i < channel_count_; ++i) {
tomwalters@268 366 float fAGCStateMean = 0.0f;
tomwalters@268 367 for (int j = 0; j < agc_stage_count_; ++j)
tomwalters@268 368 fAGCStateMean += agc_state_[i][j];
tomwalters@268 369
tomwalters@268 370 fAGCStateMean /= static_cast<float>(agc_stage_count_);
tomwalters@268 371
tomwalters@268 372 pole_damps_mod_[i] = pole_dampings_[i] *
tomwalters@268 373 (fOffset + agc_factor_ * fAGCStateMean);
tomwalters@268 374 }
tomwalters@268 375 }
tomwalters@268 376
tomwalters@268 377 float ModulePZFC::DetectFun(float fIN) {
tomwalters@268 378 if (fIN < 0.0f)
tomwalters@268 379 fIN = 0.0f;
tomwalters@268 380 float fDetect = Minimum(1.0f, fIN);
tomwalters@268 381 float fA = 0.25f;
tomwalters@268 382 return fA * fIN + (1.0f - fA) * (fDetect - pow(fDetect, 3) / 3.0f);
tomwalters@268 383 }
tomwalters@268 384
tomwalters@268 385 inline float ModulePZFC::Minimum(float a, float b) {
tomwalters@268 386 if (a < b)
tomwalters@268 387 return a;
tomwalters@268 388 else
tomwalters@268 389 return b;
tomwalters@268 390 }
tomwalters@268 391
tomwalters@268 392 void ModulePZFC::Process(const SignalBank& input) {
tomwalters@268 393 // Set the start time of the output buffer
tomwalters@268 394 output_.set_start_time(input.start_time());
tomwalters@268 395
tomwalters@268 396 for (int iSample = 0; iSample < input.buffer_length(); ++iSample) {
tomwalters@268 397 float fInput = input[0][iSample];
tomwalters@268 398
tomwalters@268 399 // Lowpass filter the input with a zero at PI
tomwalters@268 400 fInput = 0.5f * fInput + 0.5f * last_input_;
tomwalters@268 401 last_input_ = input[0][iSample];
tomwalters@268 402
tomwalters@268 403 inputs_[channel_count_ - 1] = fInput;
tomwalters@268 404 for (int c = 0; c < channel_count_ - 1; ++c)
tomwalters@268 405 inputs_[c] = previous_out_[c + 1];
tomwalters@268 406
tomwalters@268 407 // PZBankStep2
tomwalters@268 408 // to save a bunch of divides
tomwalters@268 409 float damp_rate = 1.0f / (maxdamp_ - mindamp_);
tomwalters@268 410
tomwalters@268 411 for (int c = channel_count_ - 1; c > -1; --c) {
tomwalters@268 412 float interp_factor = (pole_damps_mod_[c]
tomwalters@268 413 - mindamp_) * damp_rate;
tomwalters@268 414
tomwalters@268 415 float x = xmin_[c] + (xmax_[c] - xmin_[c]) * interp_factor;
tomwalters@268 416 float r = rmin_[c] + (rmax_[c] - rmin_[c]) * interp_factor;
tomwalters@268 417
tomwalters@268 418 // optional improvement to constellation adds a bit to r
tomwalters@268 419 float fd = pole_frequencies_[c] * pole_damps_mod_[c];
tomwalters@268 420 // quadratic for small values, then linear
tomwalters@268 421 r = r + 0.25f * fd * Minimum(0.05f, fd);
tomwalters@268 422
tomwalters@268 423 float zb1 = -2.0f * x;
tomwalters@268 424 float zb2 = r * r;
tomwalters@268 425
tomwalters@268 426 /* canonic poles but with input provided where unity DC gain is assured
tomwalters@268 427 * (mean value of state is always equal to mean value of input)
tomwalters@268 428 */
tomwalters@268 429 float new_state = inputs_[c] - (state_1_[c] - inputs_[c]) * zb1
tomwalters@268 430 - (state_2_[c] - inputs_[c]) * zb2;
tomwalters@268 431
tomwalters@268 432 // canonic zeros part as before:
tomwalters@268 433 float output = za0_[c] * new_state + za1_[c] * state_1_[c]
tomwalters@268 434 + za2_[c] * state_2_[c];
tomwalters@268 435
tomwalters@268 436 // cubic compression nonlinearity
tomwalters@268 437 output = output - 0.0001f * pow(output, 3);
tomwalters@268 438
tomwalters@268 439 output_.set_sample(c, iSample, output);
tomwalters@268 440 detect_[c] = DetectFun(output);
tomwalters@268 441 state_2_[c] = state_1_[c];
tomwalters@268 442 state_1_[c] = new_state;
tomwalters@268 443 }
tomwalters@268 444
tomwalters@268 445 if (do_agc_step_)
tomwalters@268 446 AGCDampStep();
tomwalters@268 447
tomwalters@268 448 for (int c = 0; c < channel_count_; ++c)
tomwalters@268 449 previous_out_[c] = output_[c][iSample];
tomwalters@268 450 }
tomwalters@268 451 PushOutput();
tomwalters@268 452 }
tomwalters@268 453 } // namespace aimc