annotate trunk/src/Modules/Features/ModuleGaussians.cc @ 268:e14c70d1b171

- Initial add of support code and modules. Not everything is working yet.
author tomwalters
date Fri, 12 Feb 2010 12:31:23 +0000
parents
children c26222c51fb7
rev   line source
tomwalters@268 1 // Copyright 2008-2010, Thomas Walters
tomwalters@268 2 //
tomwalters@268 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@268 4 // http://www.acousticscale.org/AIMC
tomwalters@268 5 //
tomwalters@268 6 // This program is free software: you can redistribute it and/or modify
tomwalters@268 7 // it under the terms of the GNU General Public License as published by
tomwalters@268 8 // the Free Software Foundation, either version 3 of the License, or
tomwalters@268 9 // (at your option) any later version.
tomwalters@268 10 //
tomwalters@268 11 // This program is distributed in the hope that it will be useful,
tomwalters@268 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
tomwalters@268 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
tomwalters@268 14 // GNU General Public License for more details.
tomwalters@268 15 //
tomwalters@268 16 // You should have received a copy of the GNU General Public License
tomwalters@268 17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
tomwalters@268 18
tomwalters@268 19 /*! \file
tomwalters@268 20 * \brief Gaussian features - based on MATLAB code by Christian Feldbauer
tomwalters@268 21 */
tomwalters@268 22
tomwalters@268 23 /*!
tomwalters@268 24 * \author Tom Walters <tcw24@cam.ac.uk>
tomwalters@268 25 * \date created 2008/06/23
tomwalters@268 26 * \version \$Id: ModuleGaussians.cc 2 2010-02-02 12:59:50Z tcw $
tomwalters@268 27 */
tomwalters@268 28
tomwalters@268 29 #include <math.h>
tomwalters@268 30
tomwalters@268 31 #include "Modules/Features/ModuleGaussians.h"
tomwalters@268 32 #include "Support/Common.h"
tomwalters@268 33
tomwalters@268 34 namespace aimc {
tomwalters@268 35 ModuleGaussians::ModuleGaussians(Parameters *pParam)
tomwalters@268 36 : Module(pParam) {
tomwalters@268 37 // Set module metadata
tomwalters@268 38 module_description_ = "Gaussian Fitting to SSI profile";
tomwalters@268 39 module_identifier_ = "gaussians"; // unique identifier for the module
tomwalters@268 40 module_type_ = "features";
tomwalters@268 41 module_version_ = "$Id: ModuleGaussians.cc 2 2010-02-02 12:59:50Z tcw $";
tomwalters@268 42
tomwalters@268 43 parameters_->SetDefault("features.gaussians.ncomp", "4");
tomwalters@268 44 m_iParamNComp = parameters_->GetInt("features.gaussians.ncomp");
tomwalters@268 45
tomwalters@268 46 parameters_->SetDefault("features.gaussians.var", "115.0");
tomwalters@268 47 m_fParamVar = parameters_->GetFloat("features.gaussians.var");
tomwalters@268 48
tomwalters@268 49 parameters_->SetDefault("features.gaussians.posterior_exp", "6.0");
tomwalters@268 50 m_fParamPosteriorExp =
tomwalters@268 51 parameters_->GetFloat("features.gaussians.posterior_exp");
tomwalters@268 52
tomwalters@268 53 parameters_->SetDefault("features.gaussians.maxit", "250");
tomwalters@268 54 m_iParamMaxIt = parameters_->GetInt("features.gaussians.maxit");
tomwalters@268 55
tomwalters@268 56 parameters_->SetDefault("features.gaussians.priors_converged", "1e-7");
tomwalters@268 57 m_fParamPriorsConverged =
tomwalters@268 58 parameters_->GetInt("features.gaussians.priors_converged");
tomwalters@268 59 }
tomwalters@268 60
tomwalters@268 61 ModuleGaussians::~ModuleGaussians() {
tomwalters@268 62 }
tomwalters@268 63
tomwalters@268 64 bool ModuleGaussians::InitializeInternal(const SignalBank &input) {
tomwalters@268 65 m_pA.resize(m_iParamNComp, 0.0f);
tomwalters@268 66 m_pMu.resize(m_iParamNComp, 0.0f);
tomwalters@268 67
tomwalters@268 68 // Assuming the number of channels is greater than twice the number of
tomwalters@268 69 // Gaussian components, this is ok
tomwalters@268 70 if (input.channel_count() >= 2 * m_iParamNComp) {
tomwalters@268 71 output_.Initialize(1, m_iParamNComp, input.sample_rate());
tomwalters@268 72 } else {
tomwalters@268 73 LOG_ERROR(_T("Too few channels in filterbank to produce sensible "
tomwalters@268 74 "Gaussian features. Either increase the number of filterbank"
tomwalters@268 75 " channels, or decrease the number of Gaussian components"));
tomwalters@268 76 return false;
tomwalters@268 77 }
tomwalters@268 78
tomwalters@268 79 m_iNumChannels = input.channel_count();
tomwalters@268 80 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
tomwalters@268 81
tomwalters@268 82 return true;
tomwalters@268 83 }
tomwalters@268 84
tomwalters@268 85 void ModuleGaussians::Reset() {
tomwalters@268 86 m_pSpectralProfile.clear();
tomwalters@268 87 m_pSpectralProfile.resize(m_iNumChannels, 0.0f);
tomwalters@268 88 }
tomwalters@268 89
tomwalters@268 90 void ModuleGaussians::Process(const SignalBank &input) {
tomwalters@268 91 int iAudCh = 0;
tomwalters@268 92
tomwalters@268 93 // Calculate spectral profile
tomwalters@268 94 for (int iChannel = 0;
tomwalters@268 95 iChannel < input.channel_count();
tomwalters@268 96 ++iChannel) {
tomwalters@268 97 m_pSpectralProfile[iChannel] = 0.0f;
tomwalters@268 98 for (int iSample = 0;
tomwalters@268 99 iSample < input.buffer_length();
tomwalters@268 100 ++iSample) {
tomwalters@268 101 m_pSpectralProfile[iChannel] += input[iChannel][iSample];
tomwalters@268 102 }
tomwalters@268 103 }
tomwalters@268 104
tomwalters@268 105 for (int iChannel = 0;
tomwalters@268 106 iChannel < input.channel_count();
tomwalters@268 107 ++iChannel) {
tomwalters@268 108 m_pSpectralProfile[iChannel] = pow(m_pSpectralProfile[iChannel], 0.8);
tomwalters@268 109 }
tomwalters@268 110
tomwalters@268 111 float spectral_profile_sum = 0.0f;
tomwalters@268 112 for (int i = 0; i < input.channel_count(); ++i) {
tomwalters@268 113 spectral_profile_sum += m_pSpectralProfile[i];
tomwalters@268 114 }
tomwalters@268 115
tomwalters@268 116 RubberGMMCore(2, true);
tomwalters@268 117
tomwalters@268 118 float fMean1 = m_pMu[0];
tomwalters@268 119 float fMean2 = m_pMu[1];
tomwalters@268 120
tomwalters@268 121 float fA1 = 0.05 * m_pA[0];
tomwalters@268 122 float fA2 = 1.0 - 0.25 * m_pA[1];
tomwalters@268 123
tomwalters@268 124 float fGradient = (fMean2 - fMean1) / (fA2 - fA1);
tomwalters@268 125 float fIntercept = fMean2 - fGradient * fA2;
tomwalters@268 126
tomwalters@268 127 for (int i = 0; i < m_iParamNComp; ++i) {
tomwalters@268 128 m_pMu[i] = ((float)i / (float)m_iParamNComp - 1.0f)
tomwalters@268 129 * -fGradient + fIntercept;
tomwalters@268 130 }
tomwalters@268 131
tomwalters@268 132 for (int i = 0; i < m_iParamNComp; ++i) {
tomwalters@268 133 m_pA[i] = 1.0f / (float)m_iParamNComp;
tomwalters@268 134 }
tomwalters@268 135
tomwalters@268 136 RubberGMMCore(m_iParamNComp, false);
tomwalters@268 137
tomwalters@268 138 for (int i = 0; i < m_iParamNComp - 1; ++i) {
tomwalters@268 139 if (!isnan(m_pA[i])) {
tomwalters@268 140 output_.set_sample(i, 0, m_pA[i]);
tomwalters@268 141 } else {
tomwalters@268 142 output_.set_sample(i, 0, 0.0f);
tomwalters@268 143 }
tomwalters@268 144 }
tomwalters@268 145 /*for (int i = m_iParamNComp; i < m_iParamNComp * 2; ++i) {
tomwalters@268 146 m_pOutputData->getSignal(i)->setSample(iAudCh, 0, m_pMu[i-m_iParamNComp]);
tomwalters@268 147 }*/
tomwalters@268 148 double logsum = log(spectral_profile_sum);
tomwalters@268 149 if (!isinf(logsum)) {
tomwalters@268 150 output_.set_sample(m_iParamNComp - 1, 0, logsum);
tomwalters@268 151 } else {
tomwalters@268 152 output_.set_sample(m_iParamNComp - 1, 0, -1000.0);
tomwalters@268 153 }
tomwalters@268 154 PushOutput();
tomwalters@268 155 }
tomwalters@268 156
tomwalters@268 157 bool ModuleGaussians::RubberGMMCore(int iNComponents, bool bDoInit) {
tomwalters@268 158 int iSizeX = m_iNumChannels;
tomwalters@268 159
tomwalters@268 160 // Normalise the spectral profile
tomwalters@268 161 float fSpectralProfileTotal = 0.0f;
tomwalters@268 162 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@268 163 fSpectralProfileTotal += m_pSpectralProfile[iCount];
tomwalters@268 164 }
tomwalters@268 165 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@268 166 m_pSpectralProfile[iCount] /= fSpectralProfileTotal;
tomwalters@268 167 }
tomwalters@268 168
tomwalters@268 169 if (bDoInit) {
tomwalters@268 170 // Uniformly spaced components
tomwalters@268 171 float dd = (iSizeX - 1.0f) / iNComponents;
tomwalters@268 172 for (int i = 0; i < iNComponents; i++) {
tomwalters@268 173 m_pMu[i] = dd / 2.0f + (i * dd);
tomwalters@268 174 m_pA[i] = 1.0f / iNComponents;
tomwalters@268 175 }
tomwalters@268 176 }
tomwalters@268 177
tomwalters@268 178 vector<float> pA_old;
tomwalters@268 179 pA_old.resize(iNComponents);
tomwalters@268 180 vector<float> pP_mod_X;
tomwalters@268 181 pP_mod_X.resize(iSizeX);
tomwalters@268 182 vector<float> pP_comp;
tomwalters@268 183 pP_comp.resize(iSizeX * iNComponents);
tomwalters@268 184
tomwalters@268 185 for (int iIteration = 0; iIteration < m_iParamMaxIt; iIteration++) {
tomwalters@268 186 // (re)calculate posteriors (component probability given observation)
tomwalters@268 187 // denominator: the model density at all observation points X
tomwalters@268 188 for (int i = 0; i < iSizeX; ++i) {
tomwalters@268 189 pP_mod_X[i] = 0.0f;
tomwalters@268 190 }
tomwalters@268 191
tomwalters@268 192 for (int i = 0; i < iNComponents; i++) {
tomwalters@268 193 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@268 194 pP_mod_X[iCount] += 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
tomwalters@268 195 * exp((-0.5f) * pow(((float)iCount-m_pMu[i]), 2)
tomwalters@268 196 / m_fParamVar) * m_pA[i];
tomwalters@268 197 }
tomwalters@268 198 }
tomwalters@268 199
tomwalters@268 200 for (int i = 0; i < iSizeX * iNComponents; ++i) {
tomwalters@268 201 pP_comp[i] = 0.0f;
tomwalters@268 202 }
tomwalters@268 203
tomwalters@268 204 for (int i = 0; i < iNComponents; i++) {
tomwalters@268 205 for (int iCount = 0; iCount < iSizeX; iCount++) {
tomwalters@268 206 pP_comp[iCount + i * iSizeX] =
tomwalters@268 207 1.0f / sqrt(2.0f * M_PI * m_fParamVar)
tomwalters@268 208 * exp((-0.5f) * pow(((float)iCount - m_pMu[i]), 2) / m_fParamVar);
tomwalters@268 209 pP_comp[iCount + i * iSizeX] =
tomwalters@268 210 pP_comp[iCount + i * iSizeX] * m_pA[i] / pP_mod_X[iCount];
tomwalters@268 211 }
tomwalters@268 212 }
tomwalters@268 213
tomwalters@268 214 for (int iCount = 0; iCount < iSizeX; ++iCount) {
tomwalters@268 215 float fSum = 0.0f;
tomwalters@268 216 for (int i = 0; i < iNComponents; ++i) {
tomwalters@268 217 pP_comp[iCount+i*iSizeX] = pow(pP_comp[iCount + i * iSizeX],
tomwalters@268 218 m_fParamPosteriorExp); // expansion
tomwalters@268 219 fSum += pP_comp[iCount+i*iSizeX];
tomwalters@268 220 }
tomwalters@268 221 for (int i = 0; i < iNComponents; ++i)
tomwalters@268 222 pP_comp[iCount+i*iSizeX] = pP_comp[iCount + i * iSizeX] / fSum;
tomwalters@268 223 // renormalisation
tomwalters@268 224 }
tomwalters@268 225
tomwalters@268 226 for (int i = 0; i < iNComponents; ++i) {
tomwalters@268 227 pA_old[i] = m_pA[i];
tomwalters@268 228 m_pA[i] = 0.0f;
tomwalters@268 229 for (int iCount = 0; iCount < iSizeX; ++iCount) {
tomwalters@268 230 m_pA[i] += pP_comp[iCount + i * iSizeX] * m_pSpectralProfile[iCount];
tomwalters@268 231 }
tomwalters@268 232 }
tomwalters@268 233
tomwalters@268 234 // finish when already converged
tomwalters@268 235 float fPrdist = 0.0f;
tomwalters@268 236 for (int i = 0; i < iNComponents; ++i) {
tomwalters@268 237 fPrdist += pow((m_pA[i] - pA_old[i]), 2);
tomwalters@268 238 }
tomwalters@268 239 fPrdist /= iNComponents;
tomwalters@268 240
tomwalters@268 241 if (fPrdist < m_fParamPriorsConverged) {
tomwalters@268 242 LOG_INFO("Converged!");
tomwalters@268 243 break;
tomwalters@268 244 }
tomwalters@268 245
tomwalters@268 246 // update means (positions)
tomwalters@268 247 for (int i = 0 ; i < iNComponents; ++i) {
tomwalters@268 248 float mu_old = m_pMu[i];
tomwalters@268 249 if (m_pA[i] > 0.0f) {
tomwalters@268 250 m_pMu[i] = 0.0f;
tomwalters@268 251 for (int iCount = 0; iCount < iSizeX; ++iCount) {
tomwalters@268 252 m_pMu[i] += m_pSpectralProfile[iCount]
tomwalters@268 253 * pP_comp[iCount + i * iSizeX] * (float)iCount;
tomwalters@268 254 }
tomwalters@268 255 m_pMu[i] /= m_pA[i];
tomwalters@268 256 if (isnan(m_pMu[i])) {
tomwalters@268 257 m_pMu[i] = mu_old;
tomwalters@268 258 }
tomwalters@268 259 }
tomwalters@268 260 }
tomwalters@268 261 } // loop over iterations
tomwalters@268 262
tomwalters@268 263 // Ensure they are sorted, using a really simple bubblesort
tomwalters@268 264 bool bSorted = false;
tomwalters@268 265 while (!bSorted) {
tomwalters@268 266 bSorted = true;
tomwalters@268 267 for (int i = 0; i < iNComponents - 1; ++i) {
tomwalters@268 268 if (m_pMu[i] > m_pMu[i + 1]) {
tomwalters@268 269 float fTemp = m_pMu[i];
tomwalters@268 270 m_pMu[i] = m_pMu[i + 1];
tomwalters@268 271 m_pMu[i + 1] = fTemp;
tomwalters@268 272 fTemp = m_pA[i];
tomwalters@268 273 m_pA[i] = m_pA[i + 1];
tomwalters@268 274 m_pA[i + 1] = fTemp;
tomwalters@268 275 bSorted = false;
tomwalters@268 276 }
tomwalters@268 277 }
tomwalters@268 278 }
tomwalters@268 279 return true;
tomwalters@268 280 }
tomwalters@268 281 } //namespace aimc
tomwalters@268 282