tom@574
|
1 % Copyright 2012 Google Inc. All Rights Reserved.
|
tom@516
|
2 % Author: Richard F. Lyon
|
tom@516
|
3 %
|
tom@516
|
4 % This Matlab file is part of an implementation of Lyon's cochlear model:
|
tom@516
|
5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
|
tom@516
|
6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
|
tom@516
|
7 %
|
tom@516
|
8 % Licensed under the Apache License, Version 2.0 (the "License");
|
tom@516
|
9 % you may not use this file except in compliance with the License.
|
tom@516
|
10 % You may obtain a copy of the License at
|
tom@516
|
11 %
|
tom@516
|
12 % http://www.apache.org/licenses/LICENSE-2.0
|
tom@516
|
13 %
|
tom@516
|
14 % Unless required by applicable law or agreed to in writing, software
|
tom@516
|
15 % distributed under the License is distributed on an "AS IS" BASIS,
|
tom@516
|
16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
tom@516
|
17 % See the License for the specific language governing permissions and
|
tom@516
|
18 % limitations under the License.
|
tom@516
|
19
|
tom@516
|
20 function conductance = CARFAC_Detect(x_in)
|
tom@516
|
21 % function conductance = CARFAC_detect(x_in)
|
tom@516
|
22 % An IHC-like sigmoidal detection nonlinearity for the CARFAC.
|
tom@516
|
23 % Resulting conductance is in about [0...1.3405]
|
tom@516
|
24
|
tom@516
|
25
|
tom@516
|
26 a = 0.175; % offset of low-end tail into neg x territory
|
tom@516
|
27 % this parameter is adjusted for the book, to make the 20% DC
|
tom@516
|
28 % response threshold at 0.1
|
tom@516
|
29
|
tom@516
|
30 set = x_in > -a;
|
tom@516
|
31 z = x_in(set) + a;
|
tom@516
|
32
|
tom@516
|
33 % zero is the final answer for many points:
|
tom@516
|
34 conductance = zeros(size(x_in));
|
tom@516
|
35 conductance(set) = z.^3 ./ (z.^3 + z.^2 + 0.1);
|
tom@516
|
36
|
tom@516
|
37
|
tom@516
|
38 %% other things I tried:
|
tom@516
|
39 %
|
tom@516
|
40 % % zero is the final answer for many points:
|
tom@516
|
41 % conductance = zeros(size(x_in));
|
tom@516
|
42 %
|
tom@516
|
43 % order = 4; % 3 is a little cheaper; 4 has continuous second deriv.
|
tom@516
|
44 %
|
tom@516
|
45 % % thresholds and terms involving just a, b, s are scalar ops; x are vectors
|
tom@516
|
46 %
|
tom@516
|
47 % switch order
|
tom@516
|
48 % case 3
|
tom@516
|
49 % a = 0.15; % offset of low-end tail into neg x territory
|
tom@516
|
50 % b = 1; % 0.44; % width of poly segment
|
tom@516
|
51 % slope = 0.7;
|
tom@516
|
52 %
|
tom@516
|
53 % threshold1 = -a;
|
tom@516
|
54 % threshold2 = b - a;
|
tom@516
|
55 %
|
tom@516
|
56 % set2 = x_in > threshold2;
|
tom@516
|
57 % set1 = x_in > threshold1 & ~set2;
|
tom@516
|
58 %
|
tom@516
|
59 % s = slope/(2*b - 3/2*b^2); % factor to make slope at breakpoint
|
tom@516
|
60 % t = s * (b^2 - (b^3) / 2);
|
tom@516
|
61 %
|
tom@516
|
62 % x = x_in(set1) - threshold1;
|
tom@516
|
63 % conductance(set1) = s * x .* (x - x .* x / 2); % x.^2 - 0.5x.^3
|
tom@516
|
64 %
|
tom@516
|
65 % x = x_in(set2) - threshold2;
|
tom@516
|
66 % conductance(set2) = t + slope * x ./ (1 + x);
|
tom@516
|
67 %
|
tom@516
|
68 %
|
tom@516
|
69 % case 4
|
tom@516
|
70 % a = 0.24; % offset of low-end tail into neg x territory
|
tom@516
|
71 % b = 0.57; % width of poly segment; 0.5 to end at zero curvature,
|
tom@516
|
72 % a = 0.18; % offset of low-end tail into neg x territory
|
tom@516
|
73 % b = 0.57; % width of poly segment; 0.5 to end at zero curvature,
|
tom@516
|
74 % % 0.57 to approx. match curvature of the upper segment.
|
tom@516
|
75 % threshold1 = -a;
|
tom@516
|
76 % threshold2 = b - a;
|
tom@516
|
77 %
|
tom@516
|
78 %
|
tom@516
|
79 % set2 = x_in > threshold2;
|
tom@516
|
80 % set1 = x_in > threshold1 & ~set2;
|
tom@516
|
81 %
|
tom@516
|
82 % s = 1/(3*b^2 - 4*b^3); % factor to make slope 1 at breakpoint
|
tom@516
|
83 % t = s * (b^3 - b^4);
|
tom@516
|
84 %
|
tom@516
|
85 % x = x_in(set1) - threshold1;
|
tom@516
|
86 % conductance(set1) = s * x .* x .* (x - x .* x); % x.^3 - x.^4
|
tom@516
|
87 %
|
tom@516
|
88 % x = x_in(set2) - threshold2;
|
tom@516
|
89 % conductance(set2) = t + x ./ (1 + x);
|
tom@516
|
90 %
|
tom@516
|
91 % end
|
tom@516
|
92 %
|