annotate trunk/matlab/bmm/carfac/CARFAC_AGCStep.m @ 518:62c2f21d7a75

add sample data file plan.wav
author dicklyon@google.com
date Thu, 16 Feb 2012 19:07:18 +0000
parents 68c15d43fcc8
children 2b96cb7ea4f7
rev   line source
tom@516 1 % Copyright 2012, Google, Inc.
tom@516 2 % Author: Richard F. Lyon
tom@516 3 %
tom@516 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@516 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@516 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@516 7 %
tom@516 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@516 9 % you may not use this file except in compliance with the License.
tom@516 10 % You may obtain a copy of the License at
tom@516 11 %
tom@516 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@516 13 %
tom@516 14 % Unless required by applicable law or agreed to in writing, software
tom@516 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@516 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@516 17 % See the License for the specific language governing permissions and
tom@516 18 % limitations under the License.
tom@516 19
tom@516 20 function state = CARFAC_AGCStep(AGC_coeffs, avg_detects, state)
tom@516 21 % function state = CARFAC_AGCStep(AGC_coeffs, avg_detects, state)
tom@516 22 %
tom@516 23 % one time step (at decimated low AGC rate) of the AGC state update
tom@516 24
tom@516 25 n_AGC_stages = length(AGC_coeffs.AGC_epsilon);
tom@516 26 n_mics = length(state);
tom@516 27 n_ch = size(state(1).AGC_sum, 1); % number of channels
tom@516 28
tom@516 29 optimize_for_mono = n_mics == 1; % mono optimization
tom@516 30 if ~optimize_for_mono
tom@516 31 stage_sum = zeros(n_ch, 1);
tom@516 32 end
tom@516 33
tom@516 34 for stage = 1:n_AGC_stages
tom@516 35 if ~optimize_for_mono % skip if mono
tom@516 36 if stage > 1
tom@516 37 prev_stage_mean = stage_sum / n_mics;
tom@516 38 end
tom@516 39 stage_sum(:) = 0; % sum accumulating over mics at this stage
tom@516 40 end
tom@516 41 epsilon = AGC_coeffs.AGC_epsilon(stage); % for this stage's LPF pole
tom@516 42 polez1 = AGC_coeffs.AGC1_polez(stage);
tom@516 43 polez2 = AGC_coeffs.AGC2_polez(stage);
tom@516 44 for mic = 1:n_mics
tom@516 45 if stage == 1
tom@516 46 AGC_in = AGC_coeffs.detect_scale * avg_detects(:,mic);
tom@516 47 AGC_in = max(0, AGC_in); % don't let neg inputs in
tom@516 48 else
tom@516 49 % prev. stage mixed with prev_stage_sum
tom@516 50 if optimize_for_mono
tom@516 51 % Mono optimization ignores AGC_mix_coeff,
tom@516 52 % assuming all(prev_stage_mean == AGC_memory(:, stage - 1));
tom@516 53 % but we also don't even allocate or compute the sum or mean.
tom@516 54 AGC_in = AGC_coeffs.AGC_stage_gain * ...
tom@516 55 state(mic).AGC_memory(:, stage - 1);
tom@516 56 else
tom@516 57 AGC_in = AGC_coeffs.AGC_stage_gain * ...
tom@516 58 (AGC_coeffs.AGC_mix_coeff * prev_stage_mean + ...
tom@516 59 (1 - AGC_coeffs.AGC_mix_coeff) * ...
tom@516 60 state(mic).AGC_memory(:, stage - 1));
tom@516 61 end
tom@516 62 end
tom@516 63 AGC_stage = state(mic).AGC_memory(:, stage);
tom@516 64 % first-order recursive smooting filter update:
tom@516 65 AGC_stage = AGC_stage + epsilon * (AGC_in - AGC_stage);
tom@516 66
tom@516 67 % spatially spread it; using diffusion coeffs like in smooth1d
tom@516 68 AGC_stage = SmoothDoubleExponential(AGC_stage, polez1, polez2);
tom@516 69
tom@516 70 state(mic).AGC_memory(:, stage) = AGC_stage;
tom@516 71 if stage == 1
tom@516 72 state(mic).sum_AGC = AGC_stage;
tom@516 73 else
tom@516 74 state(mic).sum_AGC = state(mic).sum_AGC + AGC_stage;
tom@516 75 end
tom@516 76 if ~optimize_for_mono
tom@516 77 stage_sum = stage_sum + AGC_stage;
tom@516 78 end
tom@516 79 end
tom@516 80 end
tom@516 81
tom@516 82