annotate matlab/bmm/carfac/SmoothDoubleExponential.m @ 649:461d4374b6d9

Test SAI with multi-channel input.
author ronw@google.com
date Tue, 11 Jun 2013 22:05:10 +0000
parents 1d720e7fffdf
children
rev   line source
tom@513 1 % Copyright 2012 Google Inc. All Rights Reserved.
tom@455 2 % Author: Richard F. Lyon
tom@455 3 %
tom@455 4 % This Matlab file is part of an implementation of Lyon's cochlear model:
tom@455 5 % "Cascade of Asymmetric Resonators with Fast-Acting Compression"
tom@455 6 % to supplement Lyon's upcoming book "Human and Machine Hearing"
tom@455 7 %
tom@455 8 % Licensed under the Apache License, Version 2.0 (the "License");
tom@455 9 % you may not use this file except in compliance with the License.
tom@455 10 % You may obtain a copy of the License at
tom@455 11 %
tom@455 12 % http://www.apache.org/licenses/LICENSE-2.0
tom@455 13 %
tom@455 14 % Unless required by applicable law or agreed to in writing, software
tom@455 15 % distributed under the License is distributed on an "AS IS" BASIS,
tom@455 16 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tom@455 17 % See the License for the specific language governing permissions and
tom@455 18 % limitations under the License.
tom@455 19
tom@455 20 function signal_vecs = SmoothDoubleExponential(signal_vecs, ...
tom@455 21 polez1, polez2, fast_matlab_way)
tom@455 22 % function signal_vecs = SmoothDoubleExponential(signal_vecs, ...
tom@455 23 % polez1, polez2, fast_matlab_way)
tom@455 24 %
tom@455 25 % Smooth the input column vectors in signal_vecs using forward
tom@455 26 % and backwards one-pole smoothing filters, backwards first, with
tom@455 27 % approximately reflecting edge conditions.
tom@455 28 %
tom@455 29 % It will be done with Matlab's filter function if "fast_matlab_way"
tom@455 30 % is nonzero or defaulted; use 0 to test the algorithm for how to do it
tom@455 31 % in sequential c code.
tom@455 32
tom@455 33 if nargin < 4
tom@455 34 fast_matlab_way = 1;
tom@455 35 % can also use the slow way with explicit loop like we'll do in C++
tom@455 36 end
tom@455 37
tom@455 38 if fast_matlab_way
tom@455 39 [junk, Z_state] = filter(1-polez1, [1, -polez1], ...
tom@455 40 signal_vecs((end-10):end, :)); % initialize state from 10 points
tom@455 41 [signal_vecs(end:-1:1), Z_state] = filter(1-polez2, [1, -polez2], ...
tom@455 42 signal_vecs(end:-1:1), Z_state*polez2/polez1);
tom@455 43 signal_vecs = filter(1-polez1, [1, -polez1], signal_vecs, ...
tom@455 44 Z_state*polez1/polez2);
tom@455 45 else
tom@455 46 npts = size(signal_vecs, 1);
tom@455 47 state = zeros(size(signal_vecs, 2));
tom@455 48 for index = npts-10:npts
tom@455 49 input = signal_vecs(index, :);
tom@455 50 state = state + (1 - polez1) * (input - state);
tom@455 51 end
tom@455 52 % smooth backward with polez2, starting with state from above:
tom@455 53 for index = npts:-1:1
tom@455 54 input = signal_vecs(index, :);
tom@455 55 state = state + (1 - polez2) * (input - state);
tom@455 56 signal_vecs(index, :) = state;
tom@455 57 end
tom@455 58 % smooth forward with polez1, starting with state from above:
tom@455 59 for index = 1:npts
tom@455 60 input = signal_vecs(index, :);
tom@455 61 state = state + (1 - polez1) * (input - state);
tom@455 62 signal_vecs(index, :) = state;
tom@455 63 end
tom@455 64 end
dicklyon@462 65