annotate src/Modules/BMM/ModulePZFC.h @ 167:420965490ce1

- Add support for reading and writing vectors from signal banks. Useful for Python.
author tomwalters
date Wed, 04 Aug 2010 20:56:29 +0000
parents 2204b3a05a28
children
rev   line source
tomwalters@10 1 // Copyright 2008-2010, Thomas Walters
tomwalters@0 2 //
tomwalters@0 3 // AIM-C: A C++ implementation of the Auditory Image Model
tomwalters@0 4 // http://www.acousticscale.org/AIMC
tomwalters@0 5 //
tomwalters@45 6 // Licensed under the Apache License, Version 2.0 (the "License");
tomwalters@45 7 // you may not use this file except in compliance with the License.
tomwalters@45 8 // You may obtain a copy of the License at
tomwalters@0 9 //
tomwalters@45 10 // http://www.apache.org/licenses/LICENSE-2.0
tomwalters@0 11 //
tomwalters@45 12 // Unless required by applicable law or agreed to in writing, software
tomwalters@45 13 // distributed under the License is distributed on an "AS IS" BASIS,
tomwalters@45 14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
tomwalters@45 15 // See the License for the specific language governing permissions and
tomwalters@45 16 // limitations under the License.
tomwalters@0 17
tomwalters@8 18 /*! \file
tomwalters@8 19 * \brief Dick Lyon's Pole-Zero Filter Cascade - implemented in C++ by Tom
tomwalters@8 20 * Walters from the AIM-MAT module based on Dick Lyon's code.
tomwalters@8 21 *
tomwalters@8 22 * \author Thomas Walters <tom@acousticscale.org>
tomwalters@8 23 * \date created 2008/02/05
tomwalters@23 24 * \version \$Id$
tomwalters@8 25 */
tomwalters@8 26
tomwalters@0 27 #ifndef _AIMC_MODULES_BMM_PZFC_H_
tomwalters@0 28 #define _AIMC_MODULES_BMM_PZFC_H_
tomwalters@0 29
tomwalters@0 30 #include <vector>
tomwalters@0 31
tomwalters@0 32 #include "Support/Module.h"
tomwalters@0 33 #include "Support/Parameters.h"
tomwalters@0 34 #include "Support/SignalBank.h"
tomwalters@0 35
tomwalters@0 36 namespace aimc {
tomwalters@0 37 using std::vector;
tomwalters@0 38 class ModulePZFC : public Module {
tomwalters@0 39 public:
tomwalters@8 40 explicit ModulePZFC(Parameters *pParam);
tomwalters@0 41 virtual ~ModulePZFC();
tomwalters@0 42
tomwalters@8 43 /*! \brief Process a buffer
tomwalters@8 44 */
tomwalters@0 45 virtual void Process(const SignalBank &input);
tomwalters@0 46
tomwalters@3 47 private:
tomwalters@8 48 /*! \brief Reset all internal state variables to their initial values
tomwalters@8 49 */
tomwalters@8 50 virtual void ResetInternal();
tomwalters@0 51
tomwalters@8 52 /*! \brief Prepare the module
tomwalters@8 53 * \param input Input SignalBank
tomwalters@8 54 * \param output true on success false on failure
tomwalters@8 55 */
tomwalters@0 56 virtual bool InitializeInternal(const SignalBank &input);
tomwalters@0 57
tomwalters@8 58 /*! \brief Set the filterbank parameters according to a fit matrix from Unoki
tomwalters@8 59 * and Lyon's fitting routine
tomwalters@8 60 */
tomwalters@0 61 bool SetPZBankCoeffsERBFitted();
tomwalters@47 62
tomwalters@47 63 /*! \brief Set the filterbank parameters using the non-fitted parameter
tomwalters@47 64 * values, spaced along an ERB scale
tomwalters@47 65 */
tomwalters@47 66 bool SetPZBankCoeffsERB();
tomwalters@47 67
tomwalters@47 68 /*! \brief Set the filterbank parameters using the non-fitted parameter
tomwalters@47 69 * values, using the Greenwood formula (?) for channel spacing.
tomwalters@47 70 */
tomwalters@47 71 bool SetPZBankCoeffsOrig();
tomwalters@47 72
tomwalters@8 73 /*! \brief Sets the general filterbank coefficients
tomwalters@8 74 */
tomwalters@0 75 bool SetPZBankCoeffs();
tomwalters@0 76
tomwalters@8 77 /*! \brief Automatic Gain Control
tomwalters@8 78 */
tomwalters@0 79 void AGCDampStep();
tomwalters@0 80
tomwalters@8 81 /*! \brief Detector function - halfwave rectification etc. Used internally,
tomwalters@8 82 * but not applied to the output.
tomwalters@8 83 */
tomwalters@0 84 float DetectFun(float fIN);
tomwalters@0 85
tomwalters@8 86 /*! \brief Minimum
tomwalters@8 87 */
tomwalters@0 88 inline float Minimum(float a, float b);
tomwalters@0 89
tomwalters@0 90 int channel_count_;
tomwalters@0 91 int buffer_length_;
tomwalters@0 92 int agc_stage_count_;
tomwalters@0 93 float sample_rate_;
tomwalters@0 94 float last_input_;
tomwalters@0 95
tomwalters@0 96 // Parameters
tomwalters@47 97 // User-settable values
tomwalters@0 98 float pole_damping_;
tomwalters@0 99 float zero_damping_;
tomwalters@0 100 float zero_factor_;
tomwalters@0 101 float step_factor_;
tomwalters@0 102 float bandwidth_over_cf_;
tomwalters@0 103 float min_bandwidth_hz_;
tomwalters@0 104 float agc_factor_;
tomwalters@0 105 float cf_max_;
tomwalters@0 106 float cf_min_;
tomwalters@0 107 float mindamp_;
tomwalters@0 108 float maxdamp_;
tomwalters@0 109 bool do_agc_step_;
tomwalters@47 110 bool use_fitted_parameters_;
tomwalters@0 111
tomwalters@0 112 // Internal Buffers
tomwalters@0 113 // Initialised once
tomwalters@0 114 vector<float> pole_dampings_;
tomwalters@0 115 vector<float> agc_epsilons_;
tomwalters@0 116 vector<float> agc_gains_;
tomwalters@0 117 vector<float> pole_frequencies_;
tomwalters@0 118 vector<float> za0_;
tomwalters@0 119 vector<float> za1_;
tomwalters@0 120 vector<float> za2_;
tomwalters@0 121 vector<float> rmin_;
tomwalters@0 122 vector<float> rmax_;
tomwalters@0 123 vector<float> xmin_;
tomwalters@0 124 vector<float> xmax_;
tomwalters@0 125
tomwalters@0 126 // Modified by algorithm at each time step
tomwalters@0 127 vector<float> detect_;
tomwalters@0 128 vector<vector<float> > agc_state_;
tomwalters@0 129 vector<float> state_1_;
tomwalters@0 130 vector<float> state_2_;
tomwalters@0 131 vector<float> previous_out_;
tomwalters@0 132 vector<float> pole_damps_mod_;
tomwalters@0 133 vector<float> inputs_;
tomwalters@0 134 };
tomwalters@0 135 }
tomwalters@0 136
tomwalters@0 137 #endif // _AIMC_MODULES_BMM_PZFC_H_