annotate carfac/ear.cc @ 635:0bdd58ee6e92

ffmpeg no longer accepts a qscale value of 0. Changed qscale to 1, which also gives a very high quality output
author sness@sness.net
date Fri, 24 May 2013 22:38:09 +0000
parents f88fdf999edc
children 27f2d9b76075
rev   line source
alexbrandmeyer@609 1 //
alexbrandmeyer@609 2 // ear.cc
alexbrandmeyer@609 3 // CARFAC Open Source C++ Library
alexbrandmeyer@609 4 //
alexbrandmeyer@609 5 // Created by Alex Brandmeyer on 5/10/13.
alexbrandmeyer@609 6 //
alexbrandmeyer@609 7 // This C++ file is part of an implementation of Lyon's cochlear model:
alexbrandmeyer@609 8 // "Cascade of Asymmetric Resonators with Fast-Acting Compression"
alexbrandmeyer@609 9 // to supplement Lyon's upcoming book "Human and Machine Hearing"
alexbrandmeyer@609 10 //
alexbrandmeyer@609 11 // Licensed under the Apache License, Version 2.0 (the "License");
alexbrandmeyer@609 12 // you may not use this file except in compliance with the License.
alexbrandmeyer@609 13 // You may obtain a copy of the License at
alexbrandmeyer@609 14 //
alexbrandmeyer@609 15 // http://www.apache.org/licenses/LICENSE-2.0
alexbrandmeyer@609 16 //
alexbrandmeyer@609 17 // Unless required by applicable law or agreed to in writing, software
alexbrandmeyer@609 18 // distributed under the License is distributed on an "AS IS" BASIS,
alexbrandmeyer@609 19 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
alexbrandmeyer@609 20 // See the License for the specific language governing permissions and
alexbrandmeyer@609 21 // limitations under the License.
alexbrandmeyer@609 22
ronw@628 23 #include <assert.h>
ronw@628 24
alexbrandmeyer@609 25 #include "ear.h"
alexbrandmeyer@609 26
alexbrandmeyer@610 27 // The 'InitEar' function takes a set of model parameters and initializes the
alexbrandmeyer@610 28 // design coefficients and model state variables needed for running the model
alexbrandmeyer@626 29 // on a single audio channel.
alexbrandmeyer@626 30 void Ear::InitEar(const int n_ch, const FPType fs,
alexbrandmeyer@626 31 const FloatArray& pole_freqs, const CARParams& car_params,
alexbrandmeyer@626 32 const IHCParams& ihc_params, const AGCParams& agc_params) {
alexbrandmeyer@610 33 // The first section of code determines the number of channels that will be
alexbrandmeyer@610 34 // used in the model on the basis of the sample rate and the CAR parameters
alexbrandmeyer@610 35 // that have been passed to this function.
alexbrandmeyer@610 36 n_ch_ = n_ch;
alexbrandmeyer@610 37 // These functions use the parameters that have been passed to design the
alexbrandmeyer@626 38 // coefficients for the first two stages of the model.
alexbrandmeyer@626 39 car_coeffs_.Design(car_params, fs, pole_freqs);
alexbrandmeyer@626 40 ihc_coeffs_.Design(ihc_params, fs);
alexbrandmeyer@626 41 // This code initializes the coefficients for each of the AGC stages.
alexbrandmeyer@626 42 agc_coeffs_.resize(agc_params.n_stages_);
alexbrandmeyer@626 43 FPType previous_stage_gain = 0.0;
alexbrandmeyer@626 44 FPType decim = 1.0;
alexbrandmeyer@626 45 for (int stage = 0; stage < agc_params.n_stages_; ++stage) {
alexbrandmeyer@626 46 agc_coeffs_[stage].Design(agc_params, stage, fs, previous_stage_gain,
alexbrandmeyer@626 47 decim);
alexbrandmeyer@626 48 // Two variables store the decimation and gain levels for use in the design
alexbrandmeyer@626 49 // of the subsequent stages.
alexbrandmeyer@626 50 previous_stage_gain = agc_coeffs_[stage].agc_gain_;
alexbrandmeyer@626 51 decim = agc_coeffs_[stage].decim_;
alexbrandmeyer@626 52 }
alexbrandmeyer@610 53 // Once the coefficients have been determined, we can initialize the state
alexbrandmeyer@610 54 // variables that will be used during runtime.
alexbrandmeyer@610 55 InitCARState();
alexbrandmeyer@610 56 InitIHCState();
alexbrandmeyer@610 57 InitAGCState();
alexbrandmeyer@609 58 }
alexbrandmeyer@609 59
alexbrandmeyer@610 60 void Ear::InitCARState() {
alexbrandmeyer@610 61 car_state_.z1_memory_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 62 car_state_.z2_memory_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 63 car_state_.za_memory_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 64 car_state_.zb_memory_ = car_coeffs_.zr_coeffs_;
alexbrandmeyer@610 65 car_state_.dzb_memory_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 66 car_state_.zy_memory_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 67 car_state_.g_memory_ = car_coeffs_.g0_coeffs_;
alexbrandmeyer@610 68 car_state_.dg_memory_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 69 }
alexbrandmeyer@610 70
alexbrandmeyer@610 71 void Ear::InitIHCState() {
alexbrandmeyer@610 72 ihc_state_.ihc_accum_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 73 if (! ihc_coeffs_.just_hwr_) {
alexbrandmeyer@610 74 ihc_state_.ac_coupler_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 75 ihc_state_.lpf1_state_ = ihc_coeffs_.rest_output_ * FloatArray::Ones(n_ch_);
alexbrandmeyer@610 76 ihc_state_.lpf2_state_ = ihc_coeffs_.rest_output_ * FloatArray::Ones(n_ch_);
alexbrandmeyer@610 77 if (ihc_coeffs_.one_cap_) {
alexbrandmeyer@610 78 ihc_state_.cap1_voltage_ = ihc_coeffs_.rest_cap1_ *
alexbrandmeyer@626 79 FloatArray::Ones(n_ch_);
alexbrandmeyer@610 80 } else {
alexbrandmeyer@610 81 ihc_state_.cap1_voltage_ = ihc_coeffs_.rest_cap1_ *
alexbrandmeyer@626 82 FloatArray::Ones(n_ch_);
alexbrandmeyer@610 83 ihc_state_.cap2_voltage_ = ihc_coeffs_.rest_cap2_ *
alexbrandmeyer@626 84 FloatArray::Ones(n_ch_);
alexbrandmeyer@610 85 }
alexbrandmeyer@610 86 }
alexbrandmeyer@610 87 }
alexbrandmeyer@610 88
alexbrandmeyer@610 89 void Ear::InitAGCState() {
alexbrandmeyer@626 90 int n_agc_stages = agc_coeffs_.size();
alexbrandmeyer@626 91 agc_state_.resize(n_agc_stages);
alexbrandmeyer@626 92 for (int i = 0; i < n_agc_stages; ++i) {
alexbrandmeyer@626 93 agc_state_[i].decim_phase_ = 0;
alexbrandmeyer@626 94 agc_state_[i].agc_memory_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@626 95 agc_state_[i].input_accum_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@610 96 }
alexbrandmeyer@610 97 }
alexbrandmeyer@610 98
alexbrandmeyer@626 99 void Ear::CARStep(const FPType input, FloatArray* car_out) {
alexbrandmeyer@626 100 // This interpolates g.
alexbrandmeyer@626 101 car_state_.g_memory_ = car_state_.g_memory_ + car_state_.dg_memory_;
alexbrandmeyer@610 102 // This calculates the AGC interpolation state.
alexbrandmeyer@626 103 car_state_.zb_memory_ = car_state_.zb_memory_ + car_state_.dzb_memory_;
alexbrandmeyer@610 104 // This updates the nonlinear function of 'velocity' along with zA, which is
alexbrandmeyer@610 105 // a delay of z2.
alexbrandmeyer@626 106 FloatArray nonlinear_fun(n_ch_);
alexbrandmeyer@626 107 FloatArray velocities = car_state_.z2_memory_ - car_state_.za_memory_;
alexbrandmeyer@626 108 OHCNonlinearFunction(velocities, &nonlinear_fun);
alexbrandmeyer@626 109 // Here, zb_memory_ * nonlinear_fun is "undamping" delta r.
alexbrandmeyer@626 110 FloatArray r = car_coeffs_.r1_coeffs_ + (car_state_.zb_memory_ *
alexbrandmeyer@626 111 nonlinear_fun);
alexbrandmeyer@626 112 car_state_.za_memory_ = car_state_.z2_memory_;
alexbrandmeyer@610 113 // Here we reduce the CAR state by r and rotate with the fixed cos/sin coeffs.
alexbrandmeyer@626 114 FloatArray z1 = r * ((car_coeffs_.a0_coeffs_ * car_state_.z1_memory_) -
alexbrandmeyer@626 115 (car_coeffs_.c0_coeffs_ * car_state_.z2_memory_));
alexbrandmeyer@626 116 car_state_.z2_memory_ = r *
alexbrandmeyer@626 117 ((car_coeffs_.c0_coeffs_ * car_state_.z1_memory_) +
alexbrandmeyer@626 118 (car_coeffs_.a0_coeffs_ * car_state_.z2_memory_));
alexbrandmeyer@626 119 car_state_.zy_memory_ = car_coeffs_.h_coeffs_ * car_state_.z2_memory_;
alexbrandmeyer@610 120 // This section ripples the input-output path, to avoid delay...
alexbrandmeyer@610 121 // It's the only part that doesn't get computed "in parallel":
alexbrandmeyer@626 122 FPType in_out = input;
alexbrandmeyer@610 123 for (int ch = 0; ch < n_ch_; ch++) {
alexbrandmeyer@609 124 z1(ch) = z1(ch) + in_out;
alexbrandmeyer@610 125 // This performs the ripple, and saves the final channel outputs in zy.
alexbrandmeyer@626 126 in_out = car_state_.g_memory_(ch) * (in_out + car_state_.zy_memory_(ch));
alexbrandmeyer@626 127 car_state_.zy_memory_(ch) = in_out;
alexbrandmeyer@609 128 }
alexbrandmeyer@609 129 car_state_.z1_memory_ = z1;
alexbrandmeyer@626 130 *car_out = car_state_.zy_memory_;
alexbrandmeyer@609 131 }
alexbrandmeyer@609 132
alexbrandmeyer@610 133 // We start with a quadratic nonlinear function, and limit it via a
alexbrandmeyer@610 134 // rational function. This makes the result go to zero at high
alexbrandmeyer@609 135 // absolute velocities, so it will do nothing there.
alexbrandmeyer@626 136 void Ear::OHCNonlinearFunction(const FloatArray& velocities,
alexbrandmeyer@626 137 FloatArray* nonlinear_fun) {
alexbrandmeyer@626 138 *nonlinear_fun = (1 + ((velocities * car_coeffs_.velocity_scale_) +
alexbrandmeyer@626 139 car_coeffs_.v_offset_).square()).inverse();
alexbrandmeyer@609 140 }
alexbrandmeyer@609 141
alexbrandmeyer@610 142 // This step is a one sample-time update of the inner-hair-cell (IHC) model,
alexbrandmeyer@610 143 // including the detection nonlinearity and either one or two capacitor state
alexbrandmeyer@610 144 // variables.
alexbrandmeyer@626 145 void Ear::IHCStep(const FloatArray& car_out, FloatArray* ihc_out) {
alexbrandmeyer@626 146 FloatArray ac_diff = car_out - ihc_state_.ac_coupler_;
alexbrandmeyer@609 147 ihc_state_.ac_coupler_ = ihc_state_.ac_coupler_ +
alexbrandmeyer@626 148 (ihc_coeffs_.ac_coeff_ * ac_diff);
alexbrandmeyer@609 149 if (ihc_coeffs_.just_hwr_) {
alexbrandmeyer@626 150 FloatArray output(n_ch_);
alexbrandmeyer@626 151 for (int ch = 0; ch < n_ch_; ++ch) {
alexbrandmeyer@626 152 FPType a = (ac_diff(ch) > 0.0) ? ac_diff(ch) : 0.0;
alexbrandmeyer@626 153 output(ch) = (a < 2) ? a : 2;
alexbrandmeyer@609 154 }
alexbrandmeyer@626 155 *ihc_out = output;
alexbrandmeyer@609 156 } else {
alexbrandmeyer@626 157 FloatArray conductance = CARFACDetect(ac_diff);
alexbrandmeyer@609 158 if (ihc_coeffs_.one_cap_) {
alexbrandmeyer@626 159 *ihc_out = conductance * ihc_state_.cap1_voltage_;
alexbrandmeyer@609 160 ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ -
alexbrandmeyer@626 161 (*ihc_out * ihc_coeffs_.out1_rate_) +
alexbrandmeyer@626 162 ((1 - ihc_state_.cap1_voltage_)
alexbrandmeyer@626 163 * ihc_coeffs_.in1_rate_);
alexbrandmeyer@609 164 } else {
alexbrandmeyer@626 165 *ihc_out = conductance * ihc_state_.cap2_voltage_;
alexbrandmeyer@609 166 ihc_state_.cap1_voltage_ = ihc_state_.cap1_voltage_ -
alexbrandmeyer@626 167 ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_)
alexbrandmeyer@626 168 * ihc_coeffs_.out1_rate_) +
alexbrandmeyer@626 169 ((1 - ihc_state_.cap1_voltage_) * ihc_coeffs_.in1_rate_);
alexbrandmeyer@609 170 ihc_state_.cap2_voltage_ = ihc_state_.cap2_voltage_ -
alexbrandmeyer@626 171 (*ihc_out * ihc_coeffs_.out2_rate_) +
alexbrandmeyer@626 172 ((ihc_state_.cap1_voltage_ - ihc_state_.cap2_voltage_)
alexbrandmeyer@626 173 * ihc_coeffs_.in2_rate_);
alexbrandmeyer@609 174 }
alexbrandmeyer@610 175 // Here we smooth the output twice using a LPF.
alexbrandmeyer@626 176 *ihc_out *= ihc_coeffs_.output_gain_;
alexbrandmeyer@609 177 ihc_state_.lpf1_state_ = ihc_state_.lpf1_state_ +
alexbrandmeyer@626 178 (ihc_coeffs_.lpf_coeff_ *
alexbrandmeyer@626 179 (*ihc_out - ihc_state_.lpf1_state_));
alexbrandmeyer@609 180 ihc_state_.lpf2_state_ = ihc_state_.lpf2_state_ +
alexbrandmeyer@626 181 (ihc_coeffs_.lpf_coeff_ *
alexbrandmeyer@626 182 (ihc_state_.lpf1_state_ - ihc_state_.lpf2_state_));
alexbrandmeyer@626 183 *ihc_out = ihc_state_.lpf2_state_ - ihc_coeffs_.rest_output_;
alexbrandmeyer@609 184 }
alexbrandmeyer@626 185 ihc_state_.ihc_accum_ += *ihc_out;
alexbrandmeyer@609 186 }
alexbrandmeyer@609 187
alexbrandmeyer@626 188 bool Ear::AGCStep(const FloatArray& ihc_out) {
alexbrandmeyer@609 189 int stage = 0;
alexbrandmeyer@626 190 int n_stages = agc_coeffs_[0].n_agc_stages_;
alexbrandmeyer@626 191 FPType detect_scale = agc_coeffs_[n_stages - 1].detect_scale_;
alexbrandmeyer@626 192 bool updated = AGCRecurse(stage, detect_scale * ihc_out);
alexbrandmeyer@609 193 return updated;
alexbrandmeyer@609 194 }
alexbrandmeyer@609 195
alexbrandmeyer@626 196 bool Ear::AGCRecurse(const int stage, FloatArray agc_in) {
alexbrandmeyer@609 197 bool updated = true;
alexbrandmeyer@610 198 // This is the decim factor for this stage, relative to input or prev. stage:
alexbrandmeyer@626 199 int decim = agc_coeffs_[stage].decimation_;
alexbrandmeyer@610 200 // This is the decim phase of this stage (do work on phase 0 only):
alexbrandmeyer@626 201 int decim_phase = agc_state_[stage].decim_phase_ + 1;
alexbrandmeyer@609 202 decim_phase = decim_phase % decim;
alexbrandmeyer@626 203 agc_state_[stage].decim_phase_ = decim_phase;
alexbrandmeyer@610 204 // Here we accumulate input for this stage from the previous stage:
alexbrandmeyer@626 205 agc_state_[stage].input_accum_ += agc_in;
alexbrandmeyer@610 206 // We don't do anything if it's not the right decim_phase.
alexbrandmeyer@610 207 if (decim_phase == 0) {
alexbrandmeyer@610 208 // Now we do lots of work, at the decimated rate.
alexbrandmeyer@610 209 // These are the decimated inputs for this stage, which will be further
alexbrandmeyer@610 210 // decimated at the next stage.
alexbrandmeyer@626 211 agc_in = agc_state_[stage].input_accum_ / decim;
alexbrandmeyer@610 212 // This resets the accumulator.
alexbrandmeyer@626 213 agc_state_[stage].input_accum_ = FloatArray::Zero(n_ch_);
alexbrandmeyer@626 214 if (stage < (agc_coeffs_.size() - 1)) {
alexbrandmeyer@610 215 // Now we recurse to evaluate the next stage(s).
alexbrandmeyer@626 216 // TODO (alexbrandmeyer): the Matlab version of AGCRecurse can return a
alexbrandmeyer@626 217 // value for updated, but isn't used in that version. Check with Dick to
alexbrandmeyer@626 218 // see if that is needed.
alexbrandmeyer@610 219 updated = AGCRecurse(stage + 1, agc_in);
alexbrandmeyer@610 220 // Afterwards we add its output to this stage input, whether it updated or
alexbrandmeyer@610 221 // not.
alexbrandmeyer@626 222 agc_in += agc_coeffs_[stage].agc_stage_gain_ *
alexbrandmeyer@626 223 agc_state_[stage + 1].agc_memory_;
alexbrandmeyer@609 224 }
alexbrandmeyer@626 225 FloatArray agc_stage_state = agc_state_[stage].agc_memory_;
alexbrandmeyer@610 226 // This performs a first-order recursive smoothing filter update, in time.
alexbrandmeyer@626 227 agc_stage_state += agc_coeffs_[stage].agc_epsilon_ *
alexbrandmeyer@626 228 (agc_in - agc_stage_state);
alexbrandmeyer@609 229 agc_stage_state = AGCSpatialSmooth(stage, agc_stage_state);
alexbrandmeyer@626 230 agc_state_[stage].agc_memory_ = agc_stage_state;
alexbrandmeyer@626 231 updated = true;
alexbrandmeyer@609 232 } else {
alexbrandmeyer@609 233 updated = false;
alexbrandmeyer@609 234 }
alexbrandmeyer@609 235 return updated;
alexbrandmeyer@609 236 }
alexbrandmeyer@609 237
alexbrandmeyer@626 238 // TODO (alexbrandmeyer): figure out how to operate directly on stage_state.
alexbrandmeyer@626 239 // Using a pointer breaks the () indexing of the Eigen arrays, but there must
alexbrandmeyer@626 240 // be a way around this.
alexbrandmeyer@626 241 FloatArray Ear::AGCSpatialSmooth(const int stage, FloatArray stage_state) {
alexbrandmeyer@626 242 int n_iterations = agc_coeffs_[stage].agc_spatial_iterations_;
alexbrandmeyer@609 243 bool use_fir;
alexbrandmeyer@610 244 use_fir = (n_iterations < 4) ? true : false;
alexbrandmeyer@609 245 if (use_fir) {
alexbrandmeyer@626 246 std::vector<FPType> fir_coeffs = agc_coeffs_[stage].agc_spatial_fir_;
alexbrandmeyer@609 247 FloatArray ss_tap1(n_ch_);
alexbrandmeyer@609 248 FloatArray ss_tap2(n_ch_);
alexbrandmeyer@609 249 FloatArray ss_tap3(n_ch_);
alexbrandmeyer@609 250 FloatArray ss_tap4(n_ch_);
alexbrandmeyer@626 251 int n_taps = agc_coeffs_[stage].agc_spatial_n_taps_;
alexbrandmeyer@610 252 // This initializes the first two taps of stage state, which are used for
alexbrandmeyer@610 253 // both possible cases.
alexbrandmeyer@609 254 ss_tap1(0) = stage_state(0);
alexbrandmeyer@610 255 ss_tap1.block(1, 0, n_ch_ - 1, 1) = stage_state.block(0, 0, n_ch_ - 1, 1);
alexbrandmeyer@610 256 ss_tap2(n_ch_ - 1) = stage_state(n_ch_ - 1);
alexbrandmeyer@610 257 ss_tap2.block(0, 0, n_ch_ - 1, 1) = stage_state.block(1, 0, n_ch_ - 1, 1);
alexbrandmeyer@609 258 switch (n_taps) {
alexbrandmeyer@609 259 case 3:
alexbrandmeyer@626 260 stage_state = (fir_coeffs[0] * ss_tap1) +
alexbrandmeyer@626 261 (fir_coeffs[1] * stage_state) +
alexbrandmeyer@626 262 (fir_coeffs[2] * ss_tap2);
alexbrandmeyer@609 263 break;
alexbrandmeyer@609 264 case 5:
alexbrandmeyer@610 265 // Now we initialize last two taps of stage state, which are only used
alexbrandmeyer@610 266 // for the 5-tap case.
alexbrandmeyer@609 267 ss_tap3(0) = stage_state(0);
alexbrandmeyer@609 268 ss_tap3(1) = stage_state(1);
alexbrandmeyer@610 269 ss_tap3.block(2, 0, n_ch_ - 2, 1) =
alexbrandmeyer@626 270 stage_state.block(0, 0, n_ch_ - 2, 1);
alexbrandmeyer@610 271 ss_tap4(n_ch_ - 2) = stage_state(n_ch_ - 1);
alexbrandmeyer@610 272 ss_tap4(n_ch_ - 1) = stage_state(n_ch_ - 2);
alexbrandmeyer@610 273 ss_tap4.block(0, 0, n_ch_ - 2, 1) =
alexbrandmeyer@626 274 stage_state.block(2, 0, n_ch_ - 2, 1);
alexbrandmeyer@626 275 stage_state = (fir_coeffs[0] * (ss_tap3 + ss_tap1)) +
alexbrandmeyer@626 276 (fir_coeffs[1] * stage_state) +
alexbrandmeyer@626 277 (fir_coeffs[2] * (ss_tap2 + ss_tap4));
alexbrandmeyer@609 278 break;
alexbrandmeyer@609 279 default:
ronw@628 280 assert(true && "Bad n_taps in AGCSpatialSmooth; should be 3 or 5.");
alexbrandmeyer@611 281 break;
alexbrandmeyer@609 282 }
alexbrandmeyer@609 283 } else {
alexbrandmeyer@610 284 stage_state = AGCSmoothDoubleExponential(stage_state,
alexbrandmeyer@626 285 agc_coeffs_[stage].agc_pole_z1_,
alexbrandmeyer@626 286 agc_coeffs_[stage].agc_pole_z2_);
alexbrandmeyer@609 287 }
alexbrandmeyer@609 288 return stage_state;
alexbrandmeyer@609 289 }
alexbrandmeyer@609 290
alexbrandmeyer@626 291 // TODO (alexbrandmeyer): figure out how to operate directly on stage_state.
alexbrandmeyer@626 292 // Same point as above for AGCSpatialSmooth.
alexbrandmeyer@610 293 FloatArray Ear::AGCSmoothDoubleExponential(FloatArray stage_state,
alexbrandmeyer@626 294 const FPType pole_z1,
alexbrandmeyer@626 295 const FPType pole_z2) {
alexbrandmeyer@611 296 int32_t n_pts = stage_state.size();
alexbrandmeyer@610 297 FPType input;
alexbrandmeyer@611 298 FPType state = 0.0;
alexbrandmeyer@626 299 // TODO (alexbrandmeyer): I'm assuming one dimensional input for now, but this
alexbrandmeyer@610 300 // should be verified with Dick for the final version
alexbrandmeyer@626 301 for (int i = n_pts - 11; i < n_pts; ++i){
alexbrandmeyer@610 302 input = stage_state(i);
alexbrandmeyer@610 303 state = state + (1 - pole_z1) * (input - state);
alexbrandmeyer@610 304 }
alexbrandmeyer@626 305 for (int i = n_pts - 1; i > -1; --i){
alexbrandmeyer@610 306 input = stage_state(i);
alexbrandmeyer@610 307 state = state + (1 - pole_z2) * (input - state);
alexbrandmeyer@610 308 }
alexbrandmeyer@626 309 for (int i = 0; i < n_pts; ++i){
alexbrandmeyer@610 310 input = stage_state(i);
alexbrandmeyer@610 311 state = state + (1 - pole_z1) * (input - state);
alexbrandmeyer@610 312 stage_state(i) = state;
alexbrandmeyer@610 313 }
alexbrandmeyer@609 314 return stage_state;
alexbrandmeyer@609 315 }
alexbrandmeyer@610 316
alexbrandmeyer@626 317 FloatArray Ear::StageGValue(const FloatArray& undamping) {
alexbrandmeyer@626 318 FloatArray r = car_coeffs_.r1_coeffs_ + car_coeffs_.zr_coeffs_ * undamping;
alexbrandmeyer@626 319 return (1 - 2 * r * car_coeffs_.a0_coeffs_ + (r * r)) /
alexbrandmeyer@626 320 (1 - 2 * r * car_coeffs_.a0_coeffs_ +
alexbrandmeyer@626 321 car_coeffs_.h_coeffs_ * r * car_coeffs_.c0_coeffs_ + (r * r));
ronw@628 322 }