annotate man/man1/gensgm.1 @ 0:5242703e91d3 tip

Initial checkin for AIM92 aimR8.2 (last updated May 1997).
author tomwalters
date Fri, 20 May 2011 15:19:45 +0100
parents
children
rev   line source
tomwalters@0 1 .TH GENSGM 1 "11 May 1995"
tomwalters@0 2 .LP
tomwalters@0 3 .SH NAME
tomwalters@0 4 .LP
tomwalters@0 5 gensgm \- generate auditory spectrogram
tomwalters@0 6 .LP
tomwalters@0 7 .SH SYNOPSIS
tomwalters@0 8 .LP
tomwalters@0 9 gensgm [ option=value | -option ] [ filename ]
tomwalters@0 10 .LP
tomwalters@0 11 .SH DESCRIPTION
tomwalters@0 12 .LP
tomwalters@0 13 The gensgm module of the AIM software performs a time-domain spectral
tomwalters@0 14 analysis using a bank of auditory filters, and summarises the
tomwalters@0 15 information in an auditory spectrogram, that is, a spectrogram with
tomwalters@0 16 auditory frequency resolution and temporal resolution, rather than the
tomwalters@0 17 fixed frequency and temporal resolution of traditional speech
tomwalters@0 18 preprocessors. The spectral analysis converts the input wave into an
tomwalters@0 19 array of filtered waves, one for each channel of a gammatone auditory
tomwalters@0 20 filterbank. The surface of the array of filtered waves is AIM's
tomwalters@0 21 representation of basilar membrane motion (BMM) as a function of
tomwalters@0 22 time. The auditory spectrogram is a plot of a sequence of spectral
tomwalters@0 23 slices extracted from the envelope of the BMM every 'frstep_epn'
tomwalters@0 24 ms. The envelope is calculated continuously, by rectifing,
tomwalters@0 25 compressing, and lowpass filtering the individual BMM waves as they
tomwalters@0 26 flow from the filterbank.
tomwalters@0 27 .LP
tomwalters@0 28 The frequency resolution of the analysis varies with the center
tomwalters@0 29 frequency of the channel as in the auditory system, and the
tomwalters@0 30 distribution of channels across frequency is chosen to match that in
tomwalters@0 31 the auditory system (Patterson and Moore, 1986). Thus, the auditory
tomwalters@0 32 spectrogram is a greyscale plot of the activity in each channel
tomwalters@0 33 (shades of black) as a function of time (the abscissa) and the centre
tomwalters@0 34 frequency of the auditory filter (the ordinate) in ERB's. The
tomwalters@0 35 representation is referred to as an auditory spectrogram (SGM) to
tomwalters@0 36 distinguish it from more traditional spectrograms based on Fourier,
tomwalters@0 37 LPC or cepstral analysis. In AIM, the suffix 'sgm' is used to
tomwalters@0 38 distinguish this spectral representation from the other spectral
tomwalters@0 39 representations provided by the software ('asa' auditory spectral
tomwalters@0 40 analysis, 'cgm' cochleogram, and 'epn' excitation pattern).
tomwalters@0 41 .LP
tomwalters@0 42 The spectral analysis performed by gensgm is the same as that
tomwalters@0 43 performed by genbmm (manaim genbmm). The primary differences are in
tomwalters@0 44 the display defaults and the inclusion of the Compression and Leaky
tomwalters@0 45 Integration modules used to produce the spectral slices that form the
tomwalters@0 46 spectrogram. As a result, this manual entry is restricted to
tomwalters@0 47 describing the option values that differ from those in genbmm and the
tomwalters@0 48 additional options required to control the Compression and Leaky
tomwalters@0 49 Integration.
tomwalters@0 50 .LP
tomwalters@0 51 .SH DISPLAY DEFAULTS
tomwalters@0 52 .LP
tomwalters@0 53 The default values for three of the display options are reset to
tomwalters@0 54 produce a spectrographic format rather than a landscape. Specifically,
tomwalters@0 55 display=greyscale, bottom=0 and top=2500. The number of channels is
tomwalters@0 56 set to 128 for compatibility with the auditory spectrum modules,
tomwalters@0 57 genasa and genepn. When using AIM as a preprocessor for speech
tomwalters@0 58 recognition the number of channels would typically be reduced to
tomwalters@0 59 between 24 and 32. Use option 'downsample' if it is necessary to
tomwalters@0 60 reduce the output to less than 24 channels across the speech range.
tomwalters@0 61 .LP
tomwalters@0 62 .SH COMPRESSION AND LEAKY INTEGRATION
tomwalters@0 63 .LP
tomwalters@0 64 Compression and lowpass filtering are activated and the neural
tomwalters@0 65 encoding stage that comes between them is turned off:
tomwalters@0 66 .LP
tomwalters@0 67 .SS "Compression"
tomwalters@0 68 .PP
tomwalters@0 69 Auditory spectra are usually produced via the functional route in
tomwalters@0 70 AIM. In this case, compress is set on
tomwalters@0 71 .LP
tomwalters@0 72 .TP 13
tomwalters@0 73 compress
tomwalters@0 74 Logarithmic compressor switch
tomwalters@0 75 .RS
tomwalters@0 76 Switch. Default: on.
tomwalters@0 77 .RE
tomwalters@0 78 .RS
tomwalters@0 79 .LP
tomwalters@0 80 Note: The compressor in the functional route of AIM is logarithmic and
tomwalters@0 81 it screens out negative BMM values before compression. This rectifies
tomwalters@0 82 the wave during the compression process and so the separate rectify
tomwalters@0 83 option is left off.
tomwalters@0 84 .RE
tomwalters@0 85 .LP
tomwalters@0 86 .RS
tomwalters@0 87 .LP
tomwalters@0 88 Note: The compressor in the physiological route of AIM is an integral
tomwalters@0 89 part of the tlf module, so when using this route to produce auditory
tomwalters@0 90 spectra, turn off the logarithmic compressor (i.e. compress=off). The
tomwalters@0 91 compressor in tlf does not screen out negative values so it is also
tomwalters@0 92 important to set rectify=on.
tomwalters@0 93 .RE
tomwalters@0 94 .RS
tomwalters@0 95 .LP
tomwalters@0 96 Full wave rectification is produced if rectify is set to 2. This
tomwalters@0 97 option value leads to smoother spectrograms. It is also useful when
tomwalters@0 98 calculating envelopes with genasa.
tomwalters@0 99 .RE
tomwalters@0 100 .LP
tomwalters@0 101 .SS "Transduction"
tomwalters@0 102 .PP
tomwalters@0 103 .LP
tomwalters@0 104 .TP 13
tomwalters@0 105 transduction
tomwalters@0 106 Neural transduction switch (at, meddis, off)
tomwalters@0 107 .RS
tomwalters@0 108 Switch. Default: off.
tomwalters@0 109 .RE
tomwalters@0 110 .LP
tomwalters@0 111 .SS "Leaky Integration"
tomwalters@0 112 .PP
tomwalters@0 113 .LP
tomwalters@0 114 .TP 13
tomwalters@0 115 stages_idt
tomwalters@0 116 Number of stages of lowpass filtering
tomwalters@0 117 .RS
tomwalters@0 118 Default unit: scalar. Default value: 2
tomwalters@0 119 .RE
tomwalters@0 120 .TP 13
tomwalters@0 121 tup_idt
tomwalters@0 122 The time constant for each filter stage
tomwalters@0 123 .RS
tomwalters@0 124 Default unit: ms. Default value: 8 ms.
tomwalters@0 125 .RE
tomwalters@0 126 .LP
tomwalters@0 127 The Equivalent Rectandular Duration (ERD) of a two stage lowpass
tomwalters@0 128 filter is about 1.6 times the time constant of each stage, or
tomwalters@0 129 12.8 ms in the current case.
tomwalters@0 130 .TP 13
tomwalters@0 131 frstep_epn
tomwalters@0 132 The time between successive spectral frames
tomwalters@0 133 .RS
tomwalters@0 134 Default unit: ms. Default value: 10 ms.
tomwalters@0 135 .RE
tomwalters@0 136 .LP
tomwalters@0 137 With a frstep_epn of 10 ms, gensgm will produce spectral frames at a
tomwalters@0 138 rate of 100 per second.
tomwalters@0 139 .LP
tomwalters@0 140 .TP 13
tomwalters@0 141 downsample
tomwalters@0 142 The time between successive spectral frames.
tomwalters@0 143 .RS
tomwalters@0 144 Default unit: ms. Default value: 10 ms.
tomwalters@0 145 .RE
tomwalters@0 146 .LP
tomwalters@0 147 Downsample is simply another name for frstep_epn, provided to
tomwalters@0 148 facilitate a different mode of thinking about time-series data.
tomwalters@0 149 .LP
tomwalters@0 150 .SH FILES
tomwalters@0 151 .LP
tomwalters@0 152 .TP 13
tomwalters@0 153 .gensgmrc
tomwalters@0 154 The options file for gensgm.
tomwalters@0 155 .LP
tomwalters@0 156 .SH SEE ALSO
tomwalters@0 157 .LP
tomwalters@0 158 genasa, genbmm, genepn, gencgm
tomwalters@0 159 .LP
tomwalters@0 160 .SH BUGS
tomwalters@0 161 .LP
tomwalters@0 162 None currently known.
tomwalters@0 163 .SH COPYRIGHT
tomwalters@0 164 .LP
tomwalters@0 165 Copyright (c) Applied Psychology Unit, Medical Research Council, 1995
tomwalters@0 166 .LP
tomwalters@0 167 Permission to use, copy, modify, and distribute this software without fee
tomwalters@0 168 is hereby granted for research purposes, provided that this copyright
tomwalters@0 169 notice appears in all copies and in all supporting documentation, and that
tomwalters@0 170 the software is not redistributed for any fee (except for a nominal
tomwalters@0 171 shipping charge). Anyone wanting to incorporate all or part of this
tomwalters@0 172 software in a commercial product must obtain a license from the Medical
tomwalters@0 173 Research Council.
tomwalters@0 174 .LP
tomwalters@0 175 The MRC makes no representations about the suitability of this
tomwalters@0 176 software for any purpose. It is provided "as is" without express or
tomwalters@0 177 implied warranty.
tomwalters@0 178 .LP
tomwalters@0 179 THE MRC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
tomwalters@0 180 ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
tomwalters@0 181 THE A.P.U. BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
tomwalters@0 182 OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
tomwalters@0 183 WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
tomwalters@0 184 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
tomwalters@0 185 SOFTWARE.
tomwalters@0 186 .LP
tomwalters@0 187 .SH ACKNOWLEDGEMENTS
tomwalters@0 188 .LP
tomwalters@0 189 The AIM software was developed for Unix workstations by John
tomwalters@0 190 Holdsworth and Mike Allerhand of the MRC APU, under the direction of
tomwalters@0 191 Roy Patterson. The physiological version of AIM was developed by
tomwalters@0 192 Christian Giguere. The options handler is by Paul Manson. The revised
tomwalters@0 193 SAI module is by Jay Datta. Michael Akeroyd extended the postscript
tomwalters@0 194 facilites and developed the xreview routine for auditory image
tomwalters@0 195 cartoons.
tomwalters@0 196 .LP
tomwalters@0 197 The project was supported by the MRC and grants from the U.K. Defense
tomwalters@0 198 Research Agency, Farnborough (Research Contract 2239); the EEC Esprit
tomwalters@0 199 BR Porgramme, Project ACTS (3207); and the U.K. Hearing Research Trust.
tomwalters@0 200