annotate man/man1/gencgm.1 @ 0:5242703e91d3 tip

Initial checkin for AIM92 aimR8.2 (last updated May 1997).
author tomwalters
date Fri, 20 May 2011 15:19:45 +0100
parents
children
rev   line source
tomwalters@0 1 .TH GENCGM 1 "11 May 1995"
tomwalters@0 2 .LP
tomwalters@0 3 .SH NAME
tomwalters@0 4 .LP
tomwalters@0 5 gencgm \- generate a cochleogram
tomwalters@0 6 .LP
tomwalters@0 7 .SH SYNOPSIS
tomwalters@0 8 .LP
tomwalters@0 9 gencgm [ option=value | -option ] [ filename ]
tomwalters@0 10 .LP
tomwalters@0 11 .SH DESCRIPTION
tomwalters@0 12 .LP
tomwalters@0 13
tomwalters@0 14 Gencgm converts the input wave into a simulated neural activity
tomwalters@0 15 pattern (NAP) and summarises the NAP as a sequence of excitation
tomwalters@0 16 patterns (EPNs) that collectively form a 'cochleogram' (CGM). The
tomwalters@0 17 operation takes place in three stages: spectral analysis, neural
tomwalters@0 18 encoding, and temporal integration. In the spectral analysis stage,
tomwalters@0 19 the input wave is converted into an array of filtered waves, one for
tomwalters@0 20 each channel of a gammatone auditory filterbank. The surface of the
tomwalters@0 21 array of filtered waves is AIM's representation of basilar membrane
tomwalters@0 22 motion (BMM) as a function of time (manaim genbmm). In the neural
tomwalters@0 23 encoding stage, compression, adaptation and suppression, are used to
tomwalters@0 24 convert each wave from the filterbank into a simulation of the
tomwalters@0 25 aggregate neural response to that wave. The array of responses is
tomwalters@0 26 AIM's simulation of the neural activity pattern (NAP) in the auditory
tomwalters@0 27 nerve at about the level of the cochlear nucleus (manaim gennap).
tomwalters@0 28 Finally, the NAP is converted into a sequence of excitation patterns
tomwalters@0 29 (EPNs) by calculating the envelope of the NAP and extracting spectral
tomwalters@0 30 slices from the envelope every 'frstep_epn' ms. The envelope is
tomwalters@0 31 calculated continuously, by lowpass filtering the individual channels
tomwalters@0 32 of the NAP as they flow from the cochlea simulation.
tomwalters@0 33 .LP
tomwalters@0 34 When the sequence of excitation patterns is presented in spectrogram
tomwalters@0 35 format, it is referred to as a 'cochleogram' (CGM). The spectrogram
tomwalters@0 36 format has time on the abscissa (x-axis), filter centre-frequency on
tomwalters@0 37 the ordinate (y-axis), and activity level as the degree of black in
tomwalters@0 38 the display. In AIM, the suffix 'cgm' is used to distinguish this
tomwalters@0 39 spectral representation from the other spectral representations
tomwalters@0 40 provided by the software ('asa' auditory spectral analysis, 'sgm'
tomwalters@0 41 auditory spectrogram, and 'epn' excitation pattern).
tomwalters@0 42 .LP
tomwalters@0 43 The NAP generated by gencgm is the same as that produced by gennap
tomwalters@0 44 (manaim gennap). The primary differences are in the display defaults
tomwalters@0 45 and the inclusion of the Leaky Integration used to construct the
tomwalters@0 46 excitation patterns that form the cochleogram. As a result, this
tomwalters@0 47 manual entry is restricted to describing the option values that differ
tomwalters@0 48 from those in gennap and the additional options required to control
tomwalters@0 49 the Leaky Integration.
tomwalters@0 50 .LP
tomwalters@0 51 .SH DISPLAY DEFAULTS
tomwalters@0 52 .LP
tomwalters@0 53 The default values for three of the display options are reset to
tomwalters@0 54 produce a spectrographic format rather than a landscape. Specifically,
tomwalters@0 55 display=greyscale, bottom=0 and top=2500. The number of channels is
tomwalters@0 56 set to 128 for compatibility with the auditory spectrum modules,
tomwalters@0 57 genasa and genepn. When using AIM as a preprocessor for speech
tomwalters@0 58 recognition the number of channels would typically be reduced to
tomwalters@0 59 between 24 and 32. Use option 'downsample' if it is necessary to
tomwalters@0 60 reduce the output to less than 24 channels across the speech range.
tomwalters@0 61 .LP
tomwalters@0 62 .SH COMPRESSION AND LEAKY INTEGRATION
tomwalters@0 63 .LP
tomwalters@0 64 Compression and lowpass filtering are activated after the neural
tomwalters@0 65 encoding stage:
tomwalters@0 66 .LP
tomwalters@0 67 .SS "Compression"
tomwalters@0 68 .PP
tomwalters@0 69 Cochleograms are usually produced via the functional route in AIM. In
tomwalters@0 70 this case, compress is set on
tomwalters@0 71 .LP
tomwalters@0 72 .TP 13
tomwalters@0 73 compress
tomwalters@0 74 Logarithmic compressor switch
tomwalters@0 75 .RS
tomwalters@0 76 Switch. Default: on.
tomwalters@0 77 .RE
tomwalters@0 78 .RS
tomwalters@0 79 .LP
tomwalters@0 80 Note: The compressor in the functional route of AIM is logarithmic and
tomwalters@0 81 it screens out negative BMM values before compression. This rectifies
tomwalters@0 82 the wave during the compression process and so the separate rectify
tomwalters@0 83 option is left off.
tomwalters@0 84 .RE
tomwalters@0 85 .LP
tomwalters@0 86 .RS
tomwalters@0 87 .LP
tomwalters@0 88 Note: The compressor in the physiological route of AIM is an integral
tomwalters@0 89 part of the tlf module, so when using this route to produce a
tomwalters@0 90 cochleogram, turn off the logarithmic compressor
tomwalters@0 91 (i.e. compress=off). The compressor in tlf does not screen out
tomwalters@0 92 negative values so it is also important to set rectify=on.
tomwalters@0 93 .RE
tomwalters@0 94 .RS
tomwalters@0 95 .LP
tomwalters@0 96 Full wave rectification is produced if rectify is set to 2. This will
tomwalters@0 97 lead to a smoother cochleogram from both the physiological and the
tomwalters@0 98 functional versions of AIM.
tomwalters@0 99 .RE
tomwalters@0 100 .LP
tomwalters@0 101 .SS "Transduction"
tomwalters@0 102 .PP
tomwalters@0 103 .LP
tomwalters@0 104 .TP 13
tomwalters@0 105 transduction
tomwalters@0 106 Neural transduction switch (at, meddis, off)
tomwalters@0 107 .RS
tomwalters@0 108 Switch. Default: at.
tomwalters@0 109
tomwalters@0 110 .RE
tomwalters@0 111 .LP
tomwalters@0 112 .SS "Leaky Integration"
tomwalters@0 113 .PP
tomwalters@0 114 .LP
tomwalters@0 115 .TP 13
tomwalters@0 116 stages_idt
tomwalters@0 117 Number of stages of lowpass filtering
tomwalters@0 118 .RS
tomwalters@0 119 Default unit: scalar. Default value: 2
tomwalters@0 120 .RE
tomwalters@0 121 .TP 13
tomwalters@0 122 tup_idt
tomwalters@0 123 The time constant for each filter stage
tomwalters@0 124 .RS
tomwalters@0 125 Default unit: ms. Default value: 8 ms.
tomwalters@0 126 .RE
tomwalters@0 127 .LP
tomwalters@0 128 The Equivalent Rectandular Duration (ERD) of a two stage lowpass
tomwalters@0 129 filter is about 1.6 times the time constant of each stage, or
tomwalters@0 130 12.8 ms in the current case.
tomwalters@0 131 .TP 13
tomwalters@0 132 frstep_epn
tomwalters@0 133 The time between successive spectral frames
tomwalters@0 134 .RS
tomwalters@0 135 Default unit: ms. Default value: 10 ms.
tomwalters@0 136 .RE
tomwalters@0 137 .LP
tomwalters@0 138 With a frstep_epn of 10 ms, gencgm will produce spectral frames at a
tomwalters@0 139 rate of 100 per second.
tomwalters@0 140 .LP
tomwalters@0 141 .TP 13
tomwalters@0 142 downsample
tomwalters@0 143 The time between successive spectral frames.
tomwalters@0 144 .RS
tomwalters@0 145 Default unit: ms. Default value: 10 ms.
tomwalters@0 146 .RE
tomwalters@0 147 .LP
tomwalters@0 148 Downsample is simply another name for frstep_epn, provided to
tomwalters@0 149 facilitate a different mode of thinking about time-series data.
tomwalters@0 150 .LP
tomwalters@0 151 .SH FILES
tomwalters@0 152 .LP
tomwalters@0 153 .TP 13
tomwalters@0 154 .gencgmrc
tomwalters@0 155 The options file for gencgm.
tomwalters@0 156 .LP
tomwalters@0 157 .SH SEE ALSO
tomwalters@0 158 .LP
tomwalters@0 159 gensgm, genasa, genepn, gennap, genbmm
tomwalters@0 160 .LP
tomwalters@0 161 .SH BUGS
tomwalters@0 162 .LP
tomwalters@0 163 None currently known.
tomwalters@0 164 .SH COPYRIGHT
tomwalters@0 165 .LP
tomwalters@0 166 Copyright (c) Applied Psychology Unit, Medical Research Council, 1995
tomwalters@0 167 .LP
tomwalters@0 168 Permission to use, copy, modify, and distribute this software without fee
tomwalters@0 169 is hereby granted for research purposes, provided that this copyright
tomwalters@0 170 notice appears in all copies and in all supporting documentation, and that
tomwalters@0 171 the software is not redistributed for any fee (except for a nominal
tomwalters@0 172 shipping charge). Anyone wanting to incorporate all or part of this
tomwalters@0 173 software in a commercial product must obtain a license from the Medical
tomwalters@0 174 Research Council.
tomwalters@0 175 .LP
tomwalters@0 176 The MRC makes no representations about the suitability of this
tomwalters@0 177 software for any purpose. It is provided "as is" without express or
tomwalters@0 178 implied warranty.
tomwalters@0 179 .LP
tomwalters@0 180 THE MRC DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
tomwalters@0 181 ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
tomwalters@0 182 THE A.P.U. BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
tomwalters@0 183 OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
tomwalters@0 184 WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
tomwalters@0 185 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
tomwalters@0 186 SOFTWARE.
tomwalters@0 187 .LP
tomwalters@0 188 .SH ACKNOWLEDGEMENTS
tomwalters@0 189 .LP
tomwalters@0 190 The AIM software was developed for Unix workstations by John
tomwalters@0 191 Holdsworth and Mike Allerhand of the MRC APU, under the direction of
tomwalters@0 192 Roy Patterson. The physiological version of AIM was developed by
tomwalters@0 193 Christian Giguere. The options handler is by Paul Manson. The revised
tomwalters@0 194 SAI module is by Jay Datta. Michael Akeroyd extended the postscript
tomwalters@0 195 facilites and developed the xreview routine for auditory image
tomwalters@0 196 cartoons.
tomwalters@0 197 .LP
tomwalters@0 198 The project was supported by the MRC and grants from the U.K. Defense
tomwalters@0 199 Research Agency, Farnborough (Research Contract 2239); the EEC Esprit
tomwalters@0 200 BR Porgramme, Project ACTS (3207); and the U.K. Hearing Research Trust.
tomwalters@0 201