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Abstract

Today, a large number of audio features exists in audio retrieval for different
purposes, such as automatic speech recognition, music information retrieval,
audio segmentation, and environmental sound retrieval. The goal of this paper
is to review latest research in the context of audio feature extraction and to give
an application-independent overview of the most important existing techniques.
We survey state-of-the-art features from various domains and propose a novel
taxonomy for the organization of audio features. Additionally, we identify the
building blocks of audio features and propose a scheme that allows for the
description of arbitrary features. We present an extensive literature survey and
provide more than 200 references to relevant high quality publications.
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1 Introduction

The increasing amounts of publicly available audio data demand for efficient
indexing and annotation to enable access to the media. Consequently, content-
based audio retrieval has been a growing field of research for several decades.
Today, content-based audio retrieval systems are employed in manifold appli-
cation domains and scenarios such as music retrieval, speech recognition, and
acoustic surveillance.
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A major challenge during the development of an audio retrieval system is
the identification of appropriate content-based features for the representation of
the audio signals under consideration. The number of published content-based
audio features is too large for quickly getting an overview of the relevant ones.
This paper tries to facilitate feature selection by organizing the large set of
available features into a novel structure.

Audio feature extraction addresses the analysis and extraction of meaning-
ful information from audio signals in order to obtain a compact and expressive
description that is machine-processable. Audio features are usually developed
in the context of a specific task and domain. Popular audio domains include
audio segmentation, automatic speech recognition, music information retrieval,
and environmental/general purpose sound recognition, see Section 6.1. We ob-
serve that features originally developed for a particular task and domain are
later often employed for other tasks in other domains. A good example are
cepstral coefficients, such as Mel-frequency cepstral coefficients (MFCCs, see
Section 5.5.1). MFCCs have originally been employed for automatic speech
recognition and were later used in other domains such as music information re-
trieval and environmental sound retrieval as well. Based on these observations,
we conclude that audio features may be considered independently from their
original application domain.

This paper provides a comprehensive survey on content-based audio features.
It differs from other surveys in audio retrieval in the fact that it does not restrict
itself to a particular application domain. We bring together state-of-the-art
and traditional features from various domains and analyze and compare their
properties.

It is nearly impossible to give a complete overview of audio features since
they are widely distributed across the scientific literature of several decades. We
survey publications in high quality audio and multimedia related journals and
conference proceedings. The resulting literature survey covers more than 200
relevant publications. From these publications we select a manifold set of state-
of-the-art features. Additionally, we include traditional features that are still
competitive. The major criterion for selection is the maximization of hetero-
geneity between the features in relation to what information they carry and
how they are computed. The result is a selection of more than 70 audio features
together with references to the relevant literature. We direct the paper towards
researchers in all domains of audio retrieval and developers of retrieval systems.

The presented set of audio features is heterogeneous and has no well-defined
structure. We develop a taxonomy in order to structure the set of audio features
into meaningful groups. The taxonomy groups the audio features by proper-
ties, such as the domain they live in, perceptual properties, and computational
similarities. It organizes the entire set of selected features into a single struc-
ture that is independent of any application domain. This novel organization
groups features with similar characteristics from different application domains.
The taxonomy represents a toolkit that facilitates the selection of features for
a particular task. It further enables the comparison of features by formal and
semantic properties.
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This paper is organized as follows. We give background information on audio
retrieval in Section 2. Characteristics of audio features and the challenges in
feature design are discussed in Section 3. Section 4 introduces a novel taxonomy
for audio features. We summarize the features in Section 5. Section 6 is devoted
to related literature. Finally, we summarize the paper and draw conclusions in
Section 7.

2 Background

This section covers different aspects, that may allow for better understanding
of the authors’ view on content-based audio retrieval and its challenges.

2.1 A Brief Overview on Content-Based Audio Retrieval

There are different fields of research in content-based audio retrieval, such as
segmentation, automatic speech recognition, music information retrieval, and
environmental sound retrieval which we list in the following. Segmentation
covers the distinction of different types of sound such as speech, music, silence,
and environmental sounds. Segmentation is an important preprocessing step
used to identify homogeneous parts in an audio stream. Based on segmentation
the different audio types are further analyzed by appropriate techniques.

Traditionally, automatic speech recognition focuses on the recognition of the
spoken word on the syntactical level [151]. Additionally, research addresses the
recognition of the spoken language, the speaker, and the extraction of emotions.

In the last decade music information retrieval became a popular domain [40].
It deals with retrieval of similar pieces of music, instruments, artists, musical
genres, and the analysis of musical structures. Another focus is music transcrip-
tion which aims at extracting pitch, attack, duration, and signal source of each
sound in a piece of music [86].

Environmental sound retrieval comprises all types of sound that are neither
speech nor music. Since this domain is arbitrary in size, most investigations
are restricted to a limited domain of sounds. A survey of techniques for feature
extraction and classification in the context of environmental sounds is given
in [36].

One major goal of content-based audio retrieval is the identification of per-
ceptually similar audio content. This task is often trivial for humans due to
powerful mechanisms in our brain. The human brain has the ability to distin-
guish between a wide range of sounds and to correctly assign them to semantic
categories and previously heard sounds. This is much more difficult for com-
puter systems, where an audio signal is simply represented by a numeric series
of samples without any semantic meaning.

Content-based audio retrieval is an ill-posed problem (also known as inverse
problem). In general, an ill-posed problem is concerned with the estimation of
model parameters by the manipulation of observed data. In case of a retrieval
task, model parameters are terms, properties and concepts that may represent
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class labels (e.g. terms like “car” and “cat,” properties like “male” and “female,”
and concepts like “outdoor” and “indoor”).

The ill-posed nature of content-based retrieval introduces a semantic gap.
The semantic gap refers to the mismatch between high-level concepts and low-
level descriptions. In content-based retrieval the semantic gap is positioned
between the audio signals and the semantics of their contents. It refers to the
fact that the same media object may represent several concepts. For example,
a recording of Beethoven’s Symphony No. 9 is a series of numeric values (sam-
ples) for a computer system. On a higher semantic level the symphony is a
sequence of notes with specific durations. A human may perceive high-level se-
mantic concepts like musical entities (motifs, themes, movements) and emotions
(excitement, euphoria).

Humans bridge the semantic gap based on prior knowledge and (cultural)
context. Machines are usually not able to complete this task. Today, the goal
of the research community is to narrow the semantic gap as far as possible.

2.2 Architecture of a typical Audio Retrieval System

A content-based (audio) retrieval system consists of multiple parts, illustrated in
Figure 1. There are three modules: the input module, the query module, and the
retrieval module. The task of the input module is to extract features from audio
objects stored in an audio database (e.g. a music database). Feature extraction
aims at reducing the amount of data and extracting meaningful information
from the signal for a particular retrieval task. Note that the amount of raw
data would be much too big for direct processing. For example, an audio signal
in standard CD quality consists of 44100 samples per second for each channel.
Furthermore, a lot of information (e.g. harmonics and timbre) is not apparent in
the waveform of a signal. Consequently, the raw waveform is often not adequate
for retrieval.

The result of feature extraction are parametric numerical descriptions (fea-
tures) that characterize meaningful information of the input signals. Features
may capture audio properties, such as the fundamental frequency and the loud-
ness of a signal. We discuss fundamental audio attributes in Section 2.4. Feature
extraction usually reduces the amount of data by several orders of magnitude.
The features are extracted once from all objects in the database and stored in
a feature database.

The user communicates with the retrieval system by formulating queries.
There are different types of queries. Usually, the user provides the system with
a query that contains one or more audio objects of interest (query by example).
Other possibilities are query by humming and query by whistling which are
often applied in music retrieval systems. In these approaches, the user has to
hum or whistle a melody which is then used as a query object. In both cases the
user asks the system to find objects with similar content as that of the query
object(s).

After formulation of a query, features are extracted from the query object(s).
This is the same procedure as in the input module. The resulting features have
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Figure 1: The components of a typical content-based audio retrieval system and
their relations.

to be compared to the features stored in the feature database in order to find
objects with similar properties. This is the task of the retrieval module.

The crucial step in the retrieval module is similarity comparison which es-
timates the similarity of different feature-based media descriptions. Similarity
judgments usually base on distance measurements. The most popular approach
in this context is the vector space model [158]. The basic assumption of this
model is that the numeric values of a feature may be regarded as a vector in
a high-dimensional space. Consequently, each feature vector denotes one posi-
tion in this vector space. Distances between feature vectors may be measured
by metrics (e.g. Euclidean metric). Similarity measurement is performed by
mapping distances in the vector space to similarities. We expect that similar
content is represented by feature vectors that are spatially close in the vector
space while dissimilar content will be spatially separated.
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Similarity measures derived from distance metrics are only appropriate to
a certain degree, since mathematical metrics usually do not fully match the
human perception of similarity. The mismatch between perceived similarity
and computed similarity often leads to unexpected retrieval results.

After similarity comparison the audio objects that are most similar to the
query object(s) are returned to the user. In general, not all returned media ob-
jects satisfy the query. Additionally, the query may be imperfect, for example
in a query by humming application. Consequently, most retrieval systems offer
the user the opportunity to give feedback based on the output of the retrieval
process. The user may specify which of the returned objects meet her expecta-
tions and which do not (relevance feedback) [92]. This information may be used
to iteratively refine the original query. Iterative refinement enables the system
to improve the quality of retrieval by incorporating the user’s knowledge.

In the following, we mainly focus on the process of feature extraction. Fea-
ture extraction is a crucial step in retrieval since the quality of retrieval heavily
relies on the quality of the features. The features determine which audio prop-
erties are available during processing. Information not captured by the features
is unavailable to the system.

For successful retrieval it is necessary that those audio properties are ex-
tracted from the input signals that are significant for the particular task. In
general, features should capture audio properties that show high variation across
the available (classes of) audio objects. It is not reasonable to extract features
that capture invariant properties of the audio objects, since they do not produce
discriminatory information. Furthermore, in some applications, e.g. automatic
speech recognition the features should reflect perceptually meaningful informa-
tion. This enables similarity comparisons that imitate human perception. In
most applications, the features should be robust against signal distortions and
interfering noise and should filter components of the signal that are not perceiv-
able by the human auditory system.

In the following, we present three example sound clips together with different
(feature) representations in order to show how different features capture different
aspects of the signals and how features influence similarity measurements. The
three example sounds are all one second long and originate from three different
sound sources all playing the musical note A4 (440 Hz). The sources are a
tuning fork, a flute, and a violin. Figures 2(a), 2(b), and 2(c) show plots of the
sounds’ amplitudes over time (also called waveforms). The sound produced by
the tuning fork has higher amplitude at the beginning and lower amplitude at the
end because it dies out slowly after striking the tuning fork. The flute’s sound
(hereafter flute) exhibits higher variation of the amplitude because it contains
tremolo. The amplitude of the violin’s sound (hereafter violin) slowly increases
towards the end. Except for the similar range of values the waveforms are not
similar at all. Signal properties and similarities can hardly be derived from the
waveforms. A much more expressive visualization of sounds is the spectrogram
which reveals the distribution of frequencies over time. The spectrogram of
the fork sound in Figure 2(d) contains only one strong frequency component
at 440 Hz. The spectrograms of flute (Figure 2(e)) and violin (Figure 2(f))
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are similar to each other. They exhibit strong frequency components at 440
Hz and contain a large number of harmonics (multiples of the fundamental
frequency). In the spectrogram of flute we further observe that the periodic
change in amplitude is accompanied by a change in the frequency distribution.

We present two different feature representations of the example sounds and
the similarities they reveal in Figure 3. Figures 3(a), 3(b), and 3(c) depict the
content-based feature pitch which is an estimate of the fundamental frequency
of a sound (see Sections 2.4 and 5.4.4). The values of the pitch feature are
almost identical for all sounds (approximately at 440 Hz). Considering pitch, the
three sounds are extremely similar and cannot be discriminated. However, the
three sounds have significantly differing acoustic colors (timbre, see Section 2.4).
Consequently, a feature that captures timbral information may be better-suited
to discriminate between the different sound sources. Figures 3(d), 3(e), and 3(f)
show visualizations of the first 13 Mel-Frequency Cepstral Coefficients (MFCCs)
which coarsely represent the spectral envelope of the signals for each frame, see
Section 5.5.1. We observe, that the three plots vary considerably. For example,
the violin’s sound has much higher values in the third and fifth MFCC than
the fork and the flute. Under consideration of this feature all three sounds are
different from each other.

This example demonstrates that different content-based features represent
different information and that the retrieval task determines which information is
necessary for measuring similarities. For example, pitch is suitable to determine
the musical note from a given audio signal (e.g. for automatic music transcrip-
tion). Classification of sound sources (e.g. different instruments) requires a
feature that captures timbral characteristics such as MFCCs.

We conclude that the selection and design of features is a non-trivial task
that has to take several aspects into account, such as the particular retrieval
task, available data, and physical and psychoacoustic properties. We summarize
aspects of feature design in Section 3.

2.3 Objective Evaluation of Audio Retrieval Techniques

An open issue is the evaluation of content-based audio retrieval systems. The
results of a retrieval system depend heavily on the input data. Hence, it may
happen that a retrieval system is optimized for a specific data set. This may
degrade the objectivity of the retrieval results.

The lack of readily available ground truths is an underestimated challenge.
There is a need for standardized ground truths in order to objectively eval-
uate the performance of different retrieval systems. Currently, ground truths
are mostly available in the domains of music information retrieval and auto-
matic speech recognition. Due to legal and economic reasons they frequently
are not for free. For speech data, high costs are introduced through the neces-
sary transcription by humans. In the domain of music, copyrights constrain the
availability of free data. The situation for environmental sounds is even worse.
Due to the infinite range of environmental sounds it is difficult to build a rep-
resentative ground truth. Furthermore, the partition of environmental sounds
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into distinct classes is much more demanding than in the domains of speech and
music due to the vast amount of possible sound sources.

Recently, there have been attempts to standardize data and evaluation met-
rics for music retrieval, for example the audio description contest at the Inter-
national Conference on Music Information Retrieval in 2004 [71] and the Mu-
sic Information Retrieval Evaluation eXchange [120]. These contests provide
ground truths for free to the participants. According to the authors’ knowledge
there are no such efforts in the context of environmental sound recognition.

We believe, that a set of freely available benchmarking databases and well-
defined performance metrics would promote the entire field of audio retrieval.
Additionally, independent domain experts should be employed in the process of
building ground truths due to their unbiased view. Even though this leads to a
decrease of performance, the objectivity and comparability of the results would
improve. Although there are efforts in this direction, more attention has to be
turned to standardized and easily available ground truths.

2.4 Attributes of Audio

Audio features represent specific properties of audio signals. Hence, we should
briefly discuss the different types of audio signals and the general attributes of
audio prior to studying audio features.

Generally, we distinguish between tones and noise. Tones are characterized
by the fact that they are “capable of exciting an auditory sensation having
pitch” [7] while noise not necessarily has a pitch (see below). Tones may be pure
tones or complex tones. A pure tone is a sound wave where “the instantaneous
sound pressure of which is a simple sinusoidal function in time” while a complex
tone contains “sinusoidal components of different frequencies” [7].

Complex tones may be further distinguished into harmonic complex tones
and inharmonic complex tones. Harmonic complex tones comprise of partials
with frequencies at integer multiples of the fundamental frequency (so called
harmonics). Inharmonic complex tones consist of partials whose frequencies
significantly differ from integer multiples of the fundamental frequency.

There are different types of noise, distinguished by their temporal and spec-
tral characteristics. Noise may be stationary or non-stationary in time. Station-
ary noise is defined as “noise with negligibly small fluctuations of level within
the period of observation” while non-stationary noise is “noise with or with-
out audible tones, for which the level varies substantially during the period of
observation” [7].

The spectral composition of noise is important for its characterization. We
distinguish between broad-band noise and narrow-band noise. Broad-band noise
usually has no pitch while narrow-band noise may stimulate pitch perception.
Special types of noise are for example white noise, which equally contains all fre-
quencies within a band, and colored noise where the spectral power distribution
is a function of frequency (e.g. pink (1/f) noise).
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From a psychoacoustic point of view, all types of audio signals may be de-
scribed in terms of the following attributes: duration, loudness, pitch, and tim-
bre.

Duration is the time between the start and the end of the audio signal of
interest. The temporal extent of a sound may be divided into attack, decay,
sustain, and release depending on the envelope of the sound. Not all sounds
necessarily have all four phases. Note that in certain cases silence (absence of
audio signals) may be of interest as well.

Loudness is an auditory sensation mainly related to sound pressure level
changes induced by the producing signal. Loudness is commonly defined as
“that attribute of auditory sensation in terms of which sounds can be ordered
on a scale extending from soft to loud” with the unit sone [7].

The American Standards Association defines (spectral) pitch as “that at-
tribute of auditory sensation in terms of which sounds may be ordered on a
scale extending from low to high” with the unit mel [7]. However, pitch has
several meanings in literature. It is often used synonymously with the funda-
mental frequency. In speech processing pitch is linked to the glottis, the source
in the source and filter model of speech production. In psychoacoustics, pitch
mainly relates to the frequency of a sound but also depends on duration, loud-
ness, and timbre. In the context of this paper, we refer to the psychoacoustic
definition.

Additionally, to spectral pitch, there is the phenomenon of virtual pitch. The
model of virtual pitch has been introduced by Terhardt [175]. It refers to the
ability of auditory perception to reproduce a missing fundamental of a complex
tone by its harmonics.

An attribute related to pitch is pitch strength. Pitch strength is the “subjec-
tive magnitude of the auditory sensation related to pitch” [7]. For example, a
pure tone produces a stronger pitch sensation than high-pass noise [204]. Gener-
ally, the spectral shape determines the pitch strength. Sounds with line spectra
and narrow-band noise evoke larger pitch strength than signals with broader
spectral distributions.

The most complex attribute of sounds is timbre. According to the ANSI
standard timbre is “that attribute of auditory sensation which enables a lis-
tener to judge that two non-identical sounds, similarly presented and having
the same loudness and pitch, are dissimilar.” [7]. For example, timbre reflects
the difference between hearing sensations evoked by different musical instru-
ments playing the same musical note (e.g. piano and violin).

In contrast to the above mentioned attributes, it has no single determining
physical counterpart [3]. Due to the multidimensionality of timbre, objective
measurements are difficult. Terasawa et al. propose a method to compare model
representations of timbre with human perception [174].

Timbre is a high-dimensional audio attribute and is influenced by both sta-
tionary and non-stationary patterns. It takes the distribution of energy in the
critical bands into account (e.g. the tonal or noise-like character of sound and
its harmonics structure). Furthermore, timbre perception involves any aspect
of sound that changes over time (changes of the spectral envelope and tempo-
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ral characteristics, such as attack, decay, sustain, and release). Preceding and
following sounds influence timbre as well.

Each of the attributes duration, loudness, pitch, and pitch strength generally
allow for ordering on a unidimensional scale. From a physical point of view, one
may be tempted to consider them as independent. Unfortunately, the sensations
of these attributes are not independent. In the following, we summarize some
relations in order to illustrate the complexity of auditory perception.

Pitch perception is not only affected by the frequency content of a sound,
but also by the sound pressure and the waveform [7, 169]. For example, the
perceived pitch of sounds with frequencies above approximately 2 kHz increases
with rising amplitudes, while sounds below 2 kHz are perceived to have lower
pitch when the amplitude increases. Pitch is usually measured using models of
the human perception. Evaluation is performed by comparison of the automatic
measurements with human assessments.

There are only few sounds that do not have a pitch at all, such as broad-band
noise. Non-pitched sounds are for example produced by percussive instruments.
Byrd and Crawford list non-pitched sounds as one of the current real world
problems in music information retrieval [21].

Pitch strength is related to duration, amplitude, and frequency of a signal.
For example, in case of pure tones the pitch strength increases both with the am-
plitude and the duration. Additionally, it reaches a maximum in the frequency
range between 1 and 3 kHz for pure sounds [204].

Loudness is a subjective sensation that does not only relate to the sound
pressure but also to the frequency content and the waveform of a signal as well
as its duration [7]. Sounds with durations below 100 ms appear less loud than
the same sounds with longer durations [204]. Furthermore, loudness sensation
varies with the frequency. This relation is described by equal-loudness contours
(see Section 3.3.1).

Generally, audio features describe aspects of the above mentioned audio
attributes. For example there is a variety of features that aim at representing
pitch and loudness. Other features capture particular aspects of timbre, such
as sharpness, tonality and frequency modulations. We present the overview of
audio features in Section 5.

3 Audio Feature Design

Feature design is an early conceptual phase in the process of feature develop-
ment. During this process, we first determine what aspects of the audio signal
the feature should capture. This is performed in the context of the application
domain in question and the specific retrieval task. The next step is the devel-
opment of a technical solution that fulfills the specified requirements and the
implementation of the feature.

In this section, we investigate properties of content-based audio features. Ad-
ditionally, we analyze the fundamental building-blocks of features from a math-
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Property Values
Signal representation linear coded, lossily compressed
Domain temporal, frequency, correlation,

cepstral, modulation frequency,
reconstructed phase space, eigendomain

Temporal scale intraframe, interframe, global
Semantic meaning perceptual, physical
Underlying model psychoacoustic, non-psychoacoustic

Table 1: The formal properties of audio features and their possible values.

ematically motivated point of view. Finally, we summarize important challenges
and problems in feature design.

3.1 Properties of Audio Features

Content-based audio features share several structural and semantical properties
that help in classifying the features. In Table 1, we summarize properties of
audio features that are most frequently used in literature.

A basic property of a feature is the audio representation it is specified for.
We distinguish between two groups of features: features based on linear coded
signals and features that operate on lossily compressed (subband-coded) audio
signals. Most feature extraction methods operate on linear coded signals. How-
ever, there has been some research on lossily compressed domain audio features,
especially for MPEG audio encoded signals due to their wide distribution. Lossy
audio compression transforms the signal into a frequency representation by em-
ploying psychoacoustic models which remove information from the signal that
is not perceptible to human listeners (e.g. due to masking effects). Although
lossy compression has different goals than feature extraction, features may ben-
efit from the psychoacoustically preprocessed signal representation, especially
for tasks in which the human perception is modeled. Furthermore, compressed
domain features may reduce computation time significantly if the source mate-
rial is already compressed. Wang et al. provide a survey of compressed domain
audio features in [188]. We focus on features for linear-coded audio signals, since
they are most popular and form the basis for most lossily compressed domain
audio features.

Another property is the domain of an audio feature. This is the represen-
tation a feature resides in after feature extraction. The domain allows for the
interpretation of the feature data and provides information about the extraction
process and the computational complexity. For example, a feature in temporal
domain directly describes the waveform while a feature in frequency domain
represents spectral characteristics of the signal. It is important to note that we
only consider the final domain of a feature and not the intermediate representa-
tions during feature extraction. For example, MFCCs are a feature in cepstral
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domain, regardless of the fact that the computation of MFCCs first takes place
in frequency domain. We summarize the different domains in Section 3.2.

Another property is the temporal scale of a feature. In general, audio is a
non-stationary time-dependent signal. Hence, various feature extraction meth-
ods operate on short frames of audio where the signal is considered to be locally
stationary (usually in the range of milliseconds). Each frame is processed sepa-
rately (eventually by taking a small number of neighboring frames into account,
such as spectral flux) which results in one feature vector for each frame. We call
such features intraframe features because they operate on independent frames.
Intraframe features are sometimes called frame-level, short-time, and steady fea-
tures [192]. A well known example for an intraframe feature are MFCCs which
are frequently extracted for frames of 10-30 ms length.

In contrast, interframe features describe the temporal change of an audio
signal. They operate on a larger temporal scale than intraframe features in order
to capture the dynamics of a signal. In practice, interframe features are often
computed from intraframe representations. Examples for interframe features are
features that represent rhythm and modulation information (see Section 5.6).
Interframe features are often called long-time features, global features, dynamic
features, clip-level features and contour features [179, 192].

In addition to interframe and intraframe features, there are global features.
According to Peeters a global feature is computed for the entire audio signal.
An example is the attack duration of a sound. However, a global feature does
not necessarily take the entire signal into account [101].

The semantic interpretation of a feature indicates whether or not the fea-
ture represents aspects of human perception. Perceptual features approximate
semantic properties known by human listeners, e.g. pitch, loudness, rhythm,
and harmonicity [201]. Additionally to perceptual features, there are physical
features. Physical features describe audio signals in terms of mathematical, sta-
tistical, and physical properties without emphasizing human perception in the
first place (e.g. Fourier transform coefficients and the signal energy).

We may further distinguish features by the type of the underlying model. In
recent years, researchers incorporated psychoacoustic models into the feature
extraction process in order to improve the information content of the features
and to approximate human similarity matching [156]. Psychoacoustic models
for example incorporate filter banks that simulate the frequency resolution of
the human auditory system. Furthermore, these models consider psychoacous-
tic properties, such as masking, specific loudness sensation, and equal-loudness
contours, see Section 3.3.1. Investigations show that retrieval results often ben-
efit from features that model psychoacoustical properties [51, 63, 156, 173].
In the context of this work, we distinguish between psychoacoustic and non-
psychoacoustic features.

Each audio feature can be characterized in terms of the above mentioned
properties. We employ several of these properties in the design of the taxonomy
in Section 4.
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3.2 Building Blocks of Features

In this section, we analyze the mathematical structure of selected features and
identify common components (building blocks). This approach offers a novel
perspective on content-based audio features that reveals their structural simi-
larities.

We decompose audio features into a sequence of basic mathematical oper-
ations similarly to Mierswa and Morik in [118]. We distinguish between three
basic groups of functions: transformations, filters, and aggregations. Transfor-
mations are functions that map data (numeric values) from one domain into
another domain. An example for a transformation is the discrete Fourier trans-
form that maps data from temporal domain into frequency domain and reveals
the frequency distribution of the signal. It is important that the transformation
from one domain into the other changes the interpretation of the data. The
following domains are frequently used in audio feature extraction.

Temporal domain. The temporal domain represents the signal changes over
time (the waveform). The abscissa of a temporal representation is the sampled
time domain and the ordinate corresponds to the amplitude of the sampled
signal. While this domain is the basis for feature extraction algorithms the
signals are often transformed into more expressive domains that are better suited
for audio analysis.

Frequency domain. The frequency domain reveals the spectral distribution
of a signal and allows for example the analysis of harmonic structures, band-
width, and tonality. For each frequency (or frequency band) the domain pro-
vides the corresponding magnitude and phase. Popular transformations from
time to frequency domain are Fourier- (DFT), Cosine- (DCT), and Wavelet
transform. Another widely-used way to transform a signal from temporal to
frequency domain is the application of banks of band-pass filters with e.g. Mel-
and Bark-scaled filters to the time domain signal. Note that Fourier-, Cosine-,
and Wavelet transforms may also be considered as filter banks.

Correlation domain. The correlation domain represents temporal relation-
ships between signals. For audio features especially the autocorrelation domain
is of interest. The autocorrelation domain represents the correlation of a signal
with a time-shifted version of the same signal for different time lags. It reveals
repeating patterns and their periodicities in a signal and may be employed, for
example for the estimation of the fundamental frequency of a signal.

Cepstral domain. The concept of cepstrum has been introduced by Bogert et
al. in [16]. A representation in cepstral domain is obtained by taking the Fourier
transform of the logarithm of the magnitude of the spectrum . The second
Fourier transform may be replaced by the inverse DFT, DCT, and inverse DCT.
The Cosine transform better decorrelates the data than the Fourier transform
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and thus is often preferred. A cepstral representation is one way to compute
an approximation of the shape (envelope) of the spectrum. Hence, cepstral
features usually capture timbral information [174]. They are frequently applied
in automatic speech recognition and audio fingerprinting.

Modulation frequency domain. The modulation frequency domain reveals
information about the temporal modulations contained in a signal. A typi-
cal representation is the joint acoustic and modulation frequency graph which
represents the temporal structure of a signal in terms of low-frequency ampli-
tude modulations [173]. The abscissa represents modulation frequencies and
the ordinate corresponds to acoustic frequencies. Another representation is the
modulation spectrogram introduced by Greenberg and Kingsbury in [55] which
displays the distribution of slow modulations across time and frequency. Mod-
ulation information may be employed for the analysis of rhythmic structures in
music [139] and noise-robust speech recognition [55, 84].

Reconstructed phase space. Audio signals such as speech and singing may
show non-linear (chaotic) phenomena that are hardly represented by the do-
mains mentioned so far. The non-linear dynamics of a system may be recon-
structed by embedding the signal into a phase space. The reconstructed phase
space is a high-dimensional space (usually d > 3), where every point corresponds
to a specific state of the system. The reconstructed phase space reveals the at-
tractor of the system under the condition that the embedding dimension d has
been chosen adequately. Features derived from the reconstructed phase space
may estimate the degree of chaos in a dynamic system and are often applied in
automatic speech recognition for the description of phonemes [1, 100].

Eigendomain. We consider a representation to be in eigendomain if it is
spanned by eigen- or singular vectors. There are different transformations and
decompositions that generate eigendomains in this sense, such as Principal Com-
ponents Analysis (PCA) and Singular Value Decomposition (SVD). The (statis-
tical) methods have in common that they decompose a mixture of variables into
some canonical form, for example uncorrelated principal components in case of
the PCA. Features in eigendomain have decorrelated or even statistically in-
dependent feature components. These representations enable easy and efficient
reduction of data (e.g. by removing principal components with low eigenvalues).

Additionally to transformations, we define filters as the second group of
operators. In the context of this paper, we define a filter as a mapping of a
set of numeric values into another set of numeric values residing in the same
domain. In general, a filter changes the values of a given numeric series but not
their number. Note that this definition of the term filter is broader than the
definition usually employed in signal processing.

Simple filters are for example scaling, normalization, magnitude, square,
exponential function, logarithm, and derivative of a set of numeric values. Other
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filters are quantization and thresholding. These operations have in common that
they reduce the range of possible values of the original series.

We further consider the process of windowing (framing) as a filter. Window-
ing is simply the multiplication of a series of values with a weighting (window)
function where all values inside the window are weighted according to the func-
tion and the values outside the window are set to zero. Windowing may be
applied for (non-)uniform scaling and for the extraction of frames from a signal
(e.g. by repeated application of hamming windows).

Similarly, there are low-pass, high-pass, and band-pass filters. Filters in the
domain of audio feature extraction are often based on Bark- [203], ERB- [126],
and Mel-scale [171]. We consider the application of a filter (or a bank of filters)
as a filter according to our definition, if the output of each filter is again a series
of values (the subband signal). Note that a filter bank may also represent a
transformation. In this case the power of each subband is aggregated over time,
which results in a spectrum of a signal. Consequently, a filter bank may be
considered as both, a filter and a transformation, depending on its output.

The third category of operations are aggregations. An aggregation is a map-
ping of a series of values into a single scalar. The purpose of aggregations is
the reduction of data, e.g. the summarization of information from multiple
subbands. Typical aggregations are mean, variance, median, sum, minimum,
and maximum. A more comprehensive aggregation is a histogram. In this case
each bin of the histogram corresponds to one aggregation. Similarly, binning of
frequencies (e.g. spectral binning into Bark- and Mel bands) is an aggregation.

A subgroup of aggregations are detectors. A detector reduces data by locat-
ing distinct points of interest in a value series, e.g. peaks, zero crossings, and
roots.

We assign each mathematical operation that occurs during feature extraction
to one of the three proposed categories (see Section 5.1). These operations
form the building blocks of features. We are able to describe the process of
computation of a feature in a very compact way, by referring to these building
blocks. As we will see, the number of different transformations, filters, and
aggregations employed in audio feature extraction is relatively low, since most
audio features share similar operations.

3.3 Challenges in Features Design

The task of feature design is the development of a feature for a specific task
under consideration of all interfering influences from the environment and con-
straints defined by the task. Environmental influences are interfering noise,
concurrent sounds, distortions in the transmission channel, and characteristics
of the signal source. Typical constraints are for example the computational
complexity, dimension, and statistical properties and the information carried
by the feature. Feature design poses various challenges to the developer. We
distinguish between psychoacoustic, technical, and numeric challenges.
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3.3.1 Psychoacoustic Challenges

Psychoacoustics focuses on the mechanisms that process an audio signal in a
way that sensations in our brain are caused. Even if the human auditory system
has been extensively investigated in recent years, we still do not fully understand
all aspects of auditory perception.

Models of psychoacoustic functions play an important role in feature de-
sign. Audio features incorporate psychoacoustic properties in order to simulate
human perception. Psychoacoustically enriched features enable similarity mea-
surements that correspond to some degree to the human concepts of similarity.

We briefly describe the function of the human ear, before we present some
aspects of psychoacoustics. The human ear comprises of three sections: the
outer ear, the middle ear, and the inner ear. The audio signal enters the outer
ear at the pinna, travels down the auditory canal, and causes the ear drum to
vibrate. The vibrations of the ear drum are transmitted to the tree bones of
the middle ear (Malleus, Incus, and Stapes) which in turn transmit the vibra-
tions to the cochlea. The cochlea in the inner ear performs a frequency-to-place
conversion. A specific point on the basilar membrane inside the cochlear is ex-
cited, depending on the frequency of the incoming signal. The movement of the
basilar membrane stimulates the hair cells which are connected to the auditory
nerve fibers. The inner hair cells transform the hydromechanical vibration into
action potentials while the outer hair cells actively influence the vibrations of
the basilar membrane. The outer hair cells receive efferent activity from the
higher centers of the auditory system. This feedback mechanism increases the
sensitivity and frequency resolution of the basilar membrane [124]. In the fol-
lowing, we summarize important aspects of auditory perception that are often
integrated into audio features.

Frequency selectivity. The frequency resolution of the basilar membrane is
higher at low frequencies than at high frequencies. Each point on the basilar
membrane may be considered as a band-pass filter (auditory filter) with a partic-
ular bandwidth (critical bandwidth) and center frequency. We refer the reader
to [204] and [124] for a comprehensive introduction to the frequency selectivity
of the human auditory system.

In practice, a critical band spectrum is obtained by the application of loga-
rithmically scaled band-pass filters where the bandwidth increases with center
frequency. Psychoacoustical scales, such as Bark- and ERB-scale are employed
to approximate the frequency resolution of the basilar membrane [125, 203].

Auditory masking. Masking is “the process by which the threshold of hear-
ing for one sound is raised by the presence of another (masking) sound” [7].
The amount of masking is expressed in decibels. We distinguish between si-
multaneous masking and temporal masking. Simultaneous masking is related
to the frequency selectivity of the human auditory system. One effect is that
when two spectral components of similar frequency occur simultaneously in the
same critical band, the louder sound may mask the softer sound [193]. Spectral
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masking effects are implemented for the computation of loudness for example
in [139].

In temporal masking, the signal and the masker occur consecutively in time.
This means for example that a loud (masking) sound may decrease the perceived
loudness of a preceding sound. We distinguish between forward masking (also
post-stimulus masking) which refers to a “condition in which the signal appears
after the masking sound” and backward masking (also pre-stimulus masking)
where the signal appears before the masking sound [7].

Loudness levels. The loudness of sinusoids is not constant over all frequen-
cies. The loudness of two tones of same sound pressure level but different fre-
quency varies [47]. Standardized equal-loudness contours relate tones of different
frequencies and sound pressure levels to loudness levels (measured in phon) [72].
Figure 4 shows equal-loudness contours for different loudness levels. Pfeiffer
presents a method to approximate loudness by incorporating equal-loudness
contours in [144].

Psychophysical power law. According to Stevens, the loudness is a power
function of the physical intensity [170]. A tenfold change in intensity (interval
of 10 phons) approximately results in a twofold change in loudness. The unit
of loudness is sone, where 1 sone is defined as the loudness of a pure 1000 Hz
tone at 40 dB sound pressure level (40 phon). Figure 4 shows the phon and
corresponding sone values of several equal-loudness contours.

In many domains psychoacoustically motivated features have shown to be su-
perior to features that do not simulate auditory perception, for example in auto-
matic speech recognition [51], fingerprinting [173], and audio classification [156].

3.3.2 Technical Challenges

An audio signal is usually exposed to distortions, such as interfering noise and
channel distortions. Techniques robust to a wide range of distortions have been
proposed for example in [5, 20]. Important factors are:

Noise. Noise is present in each audio signal and is usually an unwanted compo-
nent that interferes with the signal. Thermal noise is always introduced during
capturing and processing of signals by analog devices (microphones, amplifiers,
recorders) due to thermal motion of charge carriers. In digital systems addi-
tional noise may be introduced through sampling and quantization. These types
of noise are often neglected in audio retrieval.

More disturbing are background noise and channel distortions. Some char-
acteristics of noise have already been summarized in Section 2.4. Additionally,
noise may be characterized by the way it is embedded into the signal. The
simplest case, is additive noise. A more complicated case is convolutional noise,
usually induced by the transmission channel. Generally, noise is considered
to be independent from the signal of interest, however, this is not true in all
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Figure 4: The solid lines are the equal-loudness contours for 10 to 90 phons as
specified by the ISO 226 standard. Additionally, the corresponding sone values
are given. The dashed line is the threshold of hearing. We are most sensitive to
frequencies around 2 kHz and 5 kHz.

situations. Noise robustness is one of the main challenges in audio feature de-
sign [156, 164, 199].

Sound pressure level (SPL) variations. For many retrieval tasks it is
desired that an audio feature is invariant to the SPL of the input signal (except
for features that are explicitly designed to measure loudness, see Section 5.4.3).
For example, in automatic speech recognition, an utterance at different SPLs
should ideally yield the same feature-based representation.

Tempo variations. In most application domains uncontrolled tempo varia-
tions decrease retrieval performance. For example, in music similarity retrieval
one is interested in finding all interpretations of a piece of music independent
of their respective tempos. A challenge in feature design is to create audio de-
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scriptions that are invariant against temporal shifts and distortions. Therefore,
it is important to maintain the original frequency characteristics [130, 173].

Concurrency. Concurrent audio signals (background noise and reverbera-
tion) pose problems to feature extraction. In many situations the audio signal
contains components of more than one signal source, e.g. multiple instruments
or a mixture of environmental sounds. It is difficult (and generally impossible)
to filter all unwanted portions from the composite signal.

Available resources. Finally, the computational complexity of an audio fea-
ture is a critical factor especially in real-time applications. While feature ex-
traction on standard PCs is often possible in real-time, applications on mobile
devices, such as PDAs and mobile phones pose novel challenges to efficient fea-
ture extraction.

3.3.3 Numeric Challenges

The result of feature extraction is a numeric feature vector that represents par-
ticular aspects of the underlying signal. The feature vector should fulfill a
number of statistical and numeric requirements depending on the employed
classifier and similarity/distance measure. In the following, we summarize the
most important statistical and numeric properties.

Compactness. This property refers to the dimensionality of the feature vec-
tor. A compact representation is desired in order to decrease the computational
complexity of subsequent calculations.

Numeric range. The components of a feature vector should be in the same
numeric range in order to allow for comparisons of the components. Differ-
ent numeric ranges of components in the same vector may lead to unwanted
bias in following similarity judgements (depending on the employed classifier
and distance metric). Therefore, normalization may be applied after feature
extraction.

Completeness. A feature should be able to completely cover the range of
values of the property it describes. For example, a feature that describes the
pitch of an audio signal, should cover the entire range of possible pitches.

Redundancy. The correlation between components of a feature vector is an
indicator for its quality. The components of a feature vector should be decorre-
lated in order to maximize the expressive power. We find features with decorre-
lated components especially in the cepstral- and eigendomain (see Sections 5.5
and 5.7).

22

- DRAFT -

To appear in: Advances in Computers Vol. 78, pp. 71-150, 2010.



Discriminant power. For different audio signals, a feature should provide
different values. A measure for the discriminant power of a feature is the vari-
ance of the resulting feature vectors for a set of input signals. Given different
classes of similar signals, a discriminatory feature should have low variance in-
side each class and high variance over different classes.

Sensitivity. An indicator for the robustness of a feature is the sensitivity to
minor changes in the underlying signal. Usually, low sensitivity is desired in
order to remain robust against noise and other sources of irritation.

In general, it is not possible to optimize all mentioned properties simulta-
neously, because they are not independent from each other. For example, with
increasing discriminant power of a feature, its sensitivity to the content increases
as well which in turn may reduce noise robustness. Usually, tradeoffs have to
be found in the context of the particular retrieval task.

4 A novel Taxonomy for Audio Features

Audio features describe various aspects and properties of sound and form a
versatile set of techniques that has no inherent structure. One goal of this
paper is to introduce some structure into this field and to provide a novel,
holistic perspective. Therefore, we introduce a taxonomy that is applicable to
general purpose audio features independent from their application domain.

A taxonomy is an organization of entities according to different principles.
The proposed taxonomy organizes the audio features into hierarchical groups
with similar characteristics. There is no single, unambiguous and generally ap-
plicable taxonomy of audio features, due to their manifold nature. A number of
valid and consistent taxonomies exist. Usually, they are defined with particular
research fields in mind. Hence, most of them are tailored to the needs of these
particular fields which diminishes their general applicability.

We want to point out some issues related to the design of a taxonomy by
discussing related approaches. Tzanetakis proposes a categorization for audio
features in the domain of music information retrieval in [179]. The author
employs two organizing principles. The first principle corresponds to computa-
tional issues of a feature, e.g. Wavelet transform features, short-time Fourier
transform-based features. The second principle relates to qualities like texture,
timbre, rhythm, and pitch. This results in groups of features that either are
computed similarly or describe similar audio qualities.

Two groups in this categorization are remarkable. There is a group called
other features that incorporates features that do not fit into any other group.
This reflects the difficulties associated with the definition of a complete and
clear taxonomy. The other remarkable group is the one named musical content
features. This group contains combinations of features from the other groups
and cannot be regarded to be on the same structural level as the other groups.
Tzanetakis’ categorization is appropriate for music information retrieval [98].
However, it is too coarse for a general application in audio retrieval.
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Peeters promotes four organizing principles for the categorization of audio
features in [142]. The first one relates to the steadiness or dynamicity of a fea-
ture. The second principle takes the time extent of a feature into account. The
third principle is the abstractness of the representation resulting from feature
extraction. The last organizing principle is the extraction process of the feature.
Peeters describes an organization that is better suited for general use, though
we believe a more systematic approach is needed.

We have identified several principles that allow for classification of audio
features inspired by existing organizations and the literature survey presented
in Section 6. Generally, these principles relate to feature properties, such as the
domain, the carried information (semantic meaning), and the extraction process.
The selection of organizing principles is crucial to the worth of a taxonomy.
There is no broad consensus on the allocation of features to particular groups,
e.g. Lu et al. [109] regard zero crossing rate (ZCR) as a perceptual feature,
whereas Essid et al. [43] assign ZCR to the group of temporal features. This
lack of consensus may stem from the different viewpoints of the authors.

Despite the aforementioned difficulties, we propose a novel taxonomy, that
aims at being generally applicable. The taxonomy follows a method-oriented
approach that reveals the internal structure of different features and their simi-
larities. Additionally, it facilitates the selection of features for a particular task.
In practice, the selection of features is driven by factors such as computational
constraints (e.g. feature extraction on (mobile) devices with limited capabilities)
or semantic issues (e.g. features describing rhythm). The proposed taxonomy
is directed towards these requirements.

We believe that a taxonomy of features has to be as fine-grained as possible
in order to maximize the degree of introduced structure. However, at the same
time the taxonomy should maintain an abstract view in order to provide groups
with semantic meaning. We aim at providing a tradeoff between these conflicting
goals in the proposed taxonomy.

We assign features to groups in a way that avoids ambiguities. However, we
are aware that even with the proposed organizing principles, certain ambiguities
will remain. Generally, the number of computationally and conceptually valid
views of features, renders the elimination of ambiguities impossible.

The proposed taxonomy has several levels. On the highest level, we dis-
tinguish features by their domain as specified in Section 3.1. This organizing
principle is well-suited for the taxonomy, since each feature resides in one distinct
domain. The domains employed for the taxonomy are presented in Section 3.2.

Figure 5 depicts the groups of the first level of the taxonomy. Note that
we group features from frequency domain and from autocorrelation domain
into the same group of the taxonomy (named frequency domain) since both
domains represent similar information. The frequency domain represents the
frequency distribution of a signal while the autocorrelation domain reveals the
same frequencies (periodicities) in terms of time lags.

The domain a feature resides in reveals the basic meaning of the data rep-
resented by that feature e.g. whether or not it represents frequency content.
Additionally, it allows the user to coarsely estimate the computational com-
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Audio Features

Temporal Domain (5.2)

Frequency Domain (5.3 & 5.4)

Cepstral Domain (5.5)

Modulation Frequency Domain (5.6)

Eigendomain (5.7)

Phase Space (5.8)

Figure 5: The first level of the proposed taxonomy. The organizing principle
is the domain the features reside in. In brackets a reference to the section
containing the corresponding features is given.

plexity of a feature. It further provides information on the data quality, such
as statistical independence of the feature components.

On the next level, we apply organizing principles based on computational
and semantic concepts. Inside one domain we consistently categorize features
according to the property that structures them best. The structure of the
temporal domain bases on what aspect of the signal the feature represents. In
the temporal domain, depicted in Figure 6, we distinguish between 3 groups
of features: amplitude-based, power-based, and zero crossing-based features.
Each group contains features related to a particular physical property of the
waveform.

For the frequency domain we propose a deeper hierarchy due to the diversity
of the features that live in it. We introduce a semantic layer that divides the set
of features into two distinct groups. One group are perceptual features and the
other group are physical features. Perceptual features represent information that
has a semantic meaning to a human listener, while physical features describe
audio signals in terms of mathematical, statistical, and physical properties of
the audio signal (see Section 3.1). We believe that this layer of the taxonomy
supports clarity and practicability.

We organize the perceptual features according to semantically meaningful
aspects of sound. These aspects are: brightness, chroma, harmonicity, loudness,
pitch, and tonality. Each of these properties forms one subgroup of the percep-
tual frequency features (see Figure 7). This structure facilitates the selection of
audio features for particular retrieval tasks. For example, if the user needs to ex-
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Temporal Domain (5.2)

Zero Crossings (5.2.1)

Amplitude (5.2.2)

Power (5.2.3)

Figure 6: The organization of features in the temporal domain relates to physical
properties of the signal. In brackets a reference to the section containing the
corresponding features is given.

tract harmonic content, the taxonomy makes identification of relevant features
an easy task.

Note that we do not employ timbre as a semantic category in the taxonomy
because of its versatile nature. Its many facets would lead to an agglomeration
of diverse features into this group. Many audio features represent one or more
facets of timbre. In this taxonomy features that describe timbral properties are
distributed over several groups.

A semantic organization of the physical features in the frequency domain is
not reasonable, since physical features do not explicitly describe semantically
meaningful aspects of audio. We employ a mathematically motivated organiz-
ing principle for physical features. The features are grouped according to their
extraction process. We distinguish between features that are based on autore-
gression, adaptive time-frequency decomposition (e.g. Wavelet transform), and
short-time Fourier transform. Features that base on short-time Fourier trans-
form may be further separated into features that take the complex part into
account (phase) and features that operate on the real part (envelope) of the
spectrum.

Similarly to the physical features in the frequency domain, we organize the
features in the cepstral domain. Cepstral features have in common that they
approximate the spectral envelope. We distinguish between cepstral features by
differences in their extraction process.

Figure 8 illustrates the structure of the cepstral domain. The first group
of cepstral features employs critical band filters, features in the second group
incorporate advanced psychoacoustic models during feature extraction and the
third group applies autoregression.

Modulation frequency features carry information on long-term frequency
modulations. All features in this domain employ similar long-term spectral
analyses. A group of features we want to emphasize are rhythm-related features,
since they represent semantically meaningful information. Consequently, these
features form a subgroup in this domain.

26

- DRAFT -

To appear in: Advances in Computers Vol. 78, pp. 71-150, 2010.



Frequency Domain

Perceptual (5.4)

Brightness (5.4.1)

Tonality (5.4.2)

Loudness (5.4.3)

Pitch (5.4.4)

Chroma (5.4.5)

Harmonicity (5.4.6)

Physical (5.3)

Autoregression (5.3.1)

Adaptive Time-Freq. Decomposition (5.3.2)

Short-Time Fourier (5.3.3)

Figure 7: The organization of features in the frequency domain relates to phys-
ical and semantic properties of the signal. In brackets a reference to the section
containing the corresponding features is given.

Cepstral Domain (5.5)

Perceptual Filter Bank (5.5.1)

Advanced Auditory Model (5.5.2)

Autoregression (5.5.3)

Figure 8: The organization of features in the cepstral domain relates to the
computational properties of the features. In brackets a reference to the section
containing the corresponding features is given.
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Modulation Frequency Domain (5.6) Rhythm (5.6.1)

Figure 9: The organization of features in the modulation frequency domain. We
group features that relate to rhythmic content into a separate semantic group.
In brackets a reference to the section containing the corresponding features is
given.

The remaining domains of the first level of the taxonomy are eigendomain
and phase space. We do not further subdivide these domains, since the taxonomy
does not profit from further subdivision. A further partition of the domains
would decrease the general applicability of the taxonomy.

The taxonomy allows for the selection of features by the information the
features carry (e.g. harmonic and rhythm-related features) as well as by com-
putational criteria (e.g. temporal features). We believe that the taxonomy
groups features in a way that makes it generally applicable to all areas of audio
retrieval and demands only a small number of tradeoffs.

5 Audio Features

In the previous section, we have introduced a taxonomy that represents a hier-
archy of feature groups that share similar characteristics. We investigate more
than 70 state-of-the-art and traditional audio features from an extensive lit-
erature survey. In the following, we briefly present each audio feature in the
context of the taxonomy. The sections and subsections reflect the structure of
the taxonomy. We describe important characteristics of the features and point
out similarities and differences. Before we describe the features in more detail,
we give an overview of all covered features and introduce a compact notation
for describing the feature extraction process. We compactly present properties
of the features, such as the extraction process, domain, temporal structure, ap-
plication domain, complexity etc. A tabular representation gives the reader the
opportunity to structurally compare and survey all features.

5.1 Overview

Before we present the tables containing the properties of the features, we in-
troduce a notation, that allows for the compact representation of the extrac-
tion process of a feature. In Section 3.2 we have introduced three groups of
mathematical operations that are usually employed in audio feature extraction:
transformations, filters, and aggregations. We identify the most important op-
erators belonging to these categories by analyzing the features covered in this
paper. The resulting sets of transformations, filters, and aggregations are listed
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transformations
A Autocorrelation
R Cross-Correlation
B Band-pass Filter Bank
F Discrete Fourier Transform (DFT)
C (Inverse) Discrete Cosine Transform (DCT/IDCT)
Q Constant Q Transform (CQT)
M Modulated Complex Lapped Transform (MCLT)
V Adaptive Time Frequency Transform (ATFT)
W Discrete Wavelet (Packet) Transform (DW(P)T)
E Phase Space Embedding
I Independent Component Analysis (ICA)
P (Oriented) Principal Component Analysis ((O)PCA)
S Singular Value Decomposition (SVD)

Table 2: Frequent transformations employed in audio features and their symbols
(upper-case letters, left).

in Tables 2, 3, and 4. We arrange similar operations into groups by horizontal
bars in order to improve understanding and readability.

In the tables, we assign a character to each operation as an abbreviation.
Transformations are abbreviated by upper-case Latin characters and filters by
lower-case Latin characters. We assign Greek characters (lower- and upper-case)
to aggregations. We observe that the number of identified operations (building
blocks) is relatively small, considering, that they originate from the analysis of
more than 70 different audio features.

The process of computation of a feature may be described as a sequence of
the identified operations. We introduce a signature as a compact representation
that summarizes the computational steps of the extraction process of a feature.
A signature is a sequence of transformations, filters, and aggregations repre-
sented by the previously assigned symbols in Tables 2, 3, and 4. The characters
are arranged from left to right in the order the corresponding operations are
performed during feature extraction.

We demonstrate the composition of a signature by means of the well-known
MFCC feature [18]. MFCCs are usually computed as follows. At first the Fourier
transform of the windowed input signal is computed (a short-time Fourier trans-
form). Then a Mel-filter bank, consisting of logarithmically positioned trian-
gular band-pass filters is applied. After taking the logarithm of the magnitude
of the band-pass filtered amplitudes, the Cosine transform is taken in order to
obtain MFCCs.

We can easily construct the corresponding signature for MFCCs by selecting
the necessary building blocks from Tables 2, 3, and 4. First, a single frame (“f”)
of the input signal is extracted and a Fourier transform (“F”) is performed.
Then spectral binning of the Fourier coefficients is performed to obtain the
responses of the Mel-filters (“β”). Taking the logarithm corresponds to “l” and
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Filters
b Band-pass Filter (Bank)
c Comb Filter (Bank)
o Low-pass Filter
f Framing / Windowing
w (Non-) Linear Weighting Function
d Derivation, Difference
e Energy Spectral Density
g Group Delay Function
l Logarithm
x Exponential Function
n Normalization
a Autoregression (Linear Prediction Analysis)
r Cepstral Recursion Formula

Table 3: Frequent filters employed in audio features and their symbols (lower-
case letters, left).

the completing Cosine transform matches “C”. The resulting sequence for the
MFCC feature is “f F β l C”.

Additionally to transformations, filters, and aggregations, the signatures
may contain two structural elements: Parenthesis and Brackets. Parenthesis
indicate optional operations. We apply parenthesis in cases where different def-
initions of a feature exist in order to express that more than one computation is
possible. Brackets label operations that are repeated for several (two or more)
audio frames. For example, in the signature of MPEG-7 temporal centroid
“[f ̟] µ” the brackets indicate that the mean operator is applied to several
root-mean-squared frames.

We construct signatures for all features in order to enable a structural com-
parison of the features and present them together with other properties in Ta-
bles 5, 6, and 7. The tables organize the features according to the taxonomy.
The first column presents the domain of the features (which is the first level of
the taxonomy). The second column contains references to the sections where
the corresponding features are presented (each section covers a sub group of the
taxonomy).

For each feature we specify its temporal scale: “I,” “X,” and “G” denote
intraframe, interframe, and global features, respectively (see Section 3.1). “Y”
and “N” in column “perceptual” indicate whether or not a feature is percep-
tual. The same is done in the column “psychoacoustic model.” Furthermore,
we rate the computational complexity of each feature (“L,” “M,” and “H” de-
note low, medium, and high). The next column lists the proposed dimension of
the feature vectors. The character “V” indicates that the dimension of a fea-
tures is parameterized (variable). Additionally, we list the “application domain”
where the feature is mostly used. The abbreviation “ASR” stands for automatic
speech recognition, “ESR” is environmental sound recognition, “MIR” is music
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Aggregations and Detectors
χ Maximum
ι Minimum
µ Mean (weighted, arithmetic, geometric)
φ Median
Σ Sum, Weighted Sum
σ Deviation, Sum of Differences
̟ Root Mean Square
ω Power (Mean Square)
H Entropy
π Percentile
ρ Regression
Λ Histogram
β Spectral binning
κ Peak Detection
ψ Harmonic Peak Detection
θ Polynomial Root Finding
ζ Zero-/Level Crossing Detector

Table 4: Frequent aggregations employed in audio features and their symbols
(Greek letters, left). The subgroup of detectors are summarized at the bottom
of the table.

information retrieval, “AS” is audio segmentation, “FP” is fingerprinting and
“VAR” indicates that the feature is applied across several application domains.

The benefit of the signatures in Tables 5, 6, and 7 is not only the compact
representation of the extraction process. More important is the ability to iden-
tify structurally similar features by comparing rows in the tables. Note that
this may be done very quickly without decoding the signatures. Additionally
to structural similarities, we may identify preferred operations for particular
tasks (e.g. time-to-frequency transformation, analysis of harmonic structures),
typical combinations of building blocks and coarsely estimate the complexity of
a feature.

In the following, we summarize some observations from the signatures in
Tables 5, 6, and 7. We observe that framing (“f”) is part of almost every audio
feature independent from the temporal scale. Most of the features are intraframe
features, which means that the feature generates one vector for every frame (see
Section 3.1). Features that contain brackets in their signature are most often
interframe features, for example modulation frequency domain features. These
features incorporate information from several frames and represent long-term
properties, such as rhythm and tempo.

The signatures reveal the usage and distribution of mathematical trans-
formations among the audio features. Most features employ the (short-time)
Fourier transform (“f F”) in order to obtain a time-frequency representation.
We observe that the Cosine transform (“C”) is mainly employed for the con-
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Temporal Domain

Zero Crossings (5.2.1)

Amplitude (5.2.2)

Power (5.2.3)

Figure 10: The organization of features in the temporal domain relates to the
captured physical properties of the signal. In brackets a reference to the section
containing the corresponding features is given.

version from frequency to cepstral domain (due to its ability to decorrelate
the data). In the set of investigated features, the Wavelet transform (“W”)
appears rarely compared to the other transformations, although it has better
time-frequency resolution than the short-time Fourier transform.

As already mentioned, the features in Tables 5, 6, and 7 are arranged accord-
ing to the taxonomy (see Section 4). Usually, features from the same group of
the taxonomy share similar properties. For example, most harmonicity features
share the same building blocks (DFT “F” or Autocorrelation “A” followed by
a peak detection “h”). Another observation is that Pitch and Rhythm features
make extensive use of autocorrelation.

The identification of building blocks and signatures provides a novel per-
spective on audio features. Signatures give a compact overview of the compu-
tation of a feature and reveal basic properties (e.g. domain, temporal scale,
and complexity). Additionally, they enable the comparison of features based
on a unified vocabulary of mathematical operations that is independent of any
application domain. The literature concerning each feature is listed separately
in Section 6.2.

5.2 Temporal Features

The temporal domain is the native domain for audio signals. All temporal
features have in common that they are extracted directly from the raw audio
signal, without any preceding transformation. Consequently, the computational
complexity of temporal features tends to be low.

We partition the group of temporal features into three groups, depending on
what the feature describes. First, we investigate features that are based on zero
crossings, then we survey features that describe the amplitude and the energy
of a signal, respectively. Figure 10 depicts the groups of the taxonomy.
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5.2.1 Zero Crossing-Based Features

Zero crossings are a basic property of an audio signal that is often employed
in audio classification. Zero crossings allow for a rough estimation of dominant
frequency and the spectral centroid [41].

Zero crossing rate (ZCR). One of the cheapest and simplest features is
the zero crossing rate, which is defined as the number of zero crossings in the
temporal domain within one second. According to Kedem the ZCR is a mea-
sure for the dominant frequency in a signal [77]. ZCR is a popular feature
for speech/music discrimination [140, 159] due to its simplicity. However, it is
extensively used in a wide range of other audio application domains, such as
musical genre classification [114], highlight detection [27], speech analysis [33],
singing voice detection in music [200], and environmental sound recognition [22].

Linear prediction zero-crossing ratio (LP-ZCR). LP-ZCR is the ratio of
the zero crossing count of the waveform and the zero crossing count of the output
of a linear prediction analysis filter [41]. The feature quantifies the degree of
correlation in a signal. It helps to distinguish between different types of audio,
such as (higher correlated) voiced speech and (lower correlated) unvoiced speech.

Zero crossing peak amplitudes (ZCPA). The ZCPA feature has been
proposed by Kim et al. in [80, 81] for automatic speech recognition in noisy
environments. The ZCPA technique extracts frequency information and cor-
responding intensities in several psychoacoustically scaled subbands from time
domain zero crossings. Information from all subbands is accumulated into a
histogram where each bin represents a frequency. The ZCPA feature is an
approximation of the spectrum that is directly computed from the signal in
temporal domain and may be regarded as a descriptor of the spectral shape.
Kim et al. show that ZCPA outperforms linear prediction cepstral coefficients
(see Section 5.5.3) under noisy conditions for automatic speech recognition [81].

Pitch synchronous zero crossing peak amplitudes (PS-ZCPA). PS-
ZCPA is an extension of ZCPA that additionally takes pitch information into
account [52]. Small peak amplitudes, which are prone to noise are removed
by synchronizing the ZCPA with the pitch. Ghulam et al. show that the
resulting feature is more robust to noise than ZCPA [52]. They further increase
the performance of PS-ZCPA by taking auditory masking effects into account
in [53].

5.2.2 Amplitude-Based Features

Some features are directly computed from the amplitude (pressure variation) of
a signal. Amplitude-based features are easy and fast to compute but limited in
their expressiveness. They represent the temporal envelope of the audio signal.
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MPEG-7 audio waveform (AW). The audio waveform descriptor gives a
compact description of the shape of a waveform by computing the minimum
and maximum samples within non-overlapping frames. The AW descriptor rep-
resents the (downsampled) waveform envelope over time. The purpose of the
descriptor is the display and comparison of waveforms rather than retrieval [73].

Amplitude descriptor (AD). The amplitude descriptor has been developed
for the recognition of animal sounds [123]. The descriptor separates the signal
into segments with low and high amplitude by an adaptive threshold (a level-
crossing operation). The duration, variation of duration, and energy of these
segments make up the descriptor. AD characterizes the waveform envelope in
terms of quiet and loud segments. It allows to distinguish sounds with charac-
teristic waveform envelopes.

5.2.3 Power-Based Features

The energy of a signal is the square of the amplitude represented by the wave-
form. The power of a sound is the energy transmitted per unit time (sec-
ond) [124]. Consequently, power is the mean-square of a signal. Sometimes the
root of power (root-mean-square) is used in feature extraction. In the following,
we summarize features that represent the power of a signal (short-time energy,
volume) and its temporal distribution (temporal centroid, log attack time).

Short-time energy (STE). STE describes the envelope of a signal and is
extensively used in various fields of audio retrieval (see Table 9 in Section 6.2
for a list of references). We define STE according to Zhang and Kuo as the
mean energy per frame (which actually is a measure for power) [201]. The
same definition is used for the MPEG-7 audio power descriptor [73]. Note
that there are varying definitions for STE that take the spectral power into
account [32, 109].

Volume. Volume is a popular feature in audio retrieval, for example in silence
detection and speech/music segmentation [76, 140]. Volume is sometimes called
loudness, as in [194]. We use the term loudness for features that model human
sensation of loudness, see Section 5.4.3. Volume is usually approximated by the
root-mean-square (RMS) of the signal magnitude within a frame [104]. Conse-
quently, volume is the square root of STE. Both, volume and STE reveal the
magnitude variation over time.

MPEG-7 temporal centroid. The temporal centroid is the time average
over the envelope of a signal in seconds [73]. It is the point in time where most
of the energy of the signal is located in average. Note that the computation
of temporal centroid is equivalent to that of spectral centroid (Section 5.4.1) in
the fr equency domain.
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Frequency Domain Physical

Autoregression (5.3.1)

Adaptive Time-Freq. Decompos. (5.3.2)

Short-Time Fourier (5.3.3)

Figure 11: The organization of physical features in the frequency domain. In
brackets a reference to the section containing the corresponding features is given.

MPEG-7 log attack time (LAT). The log attack time characterizes the
attack of a sound. LAT is the logarithm of the time it takes from the beginning of
a sound signal to the point in time where the amplitude reaches a first significant
maximum [73]. The attack characterizes the beginning of a sound, which can
be either smooth or sudden. LAT may be employed for classification of musical
instruments by their onsets.

5.3 Physical Frequency Features

The group of frequency domain features is the largest group of audio features.
All features in this group have in common that they live in frequency or auto-
correlation domain. From the signatures in Tables 5, 6, and 7 we observe that
there are several ways to obtain a representation in these domains. The most
popular methods are the Fourier transform and the autocorrelation. Other pop-
ular methods are the Cosine transform, Wavelet transform, and the constant Q
transform. For some features the spectrogram is computed by directly applying
a bank of band-pass filters to the temporal signal followed by framing of the
subband signals.

We divide frequency features into two subsets: physical features and per-
ceptual features. See Section 3.1 for more details on these two properties. In
this section, we focus on physical frequency features. These features describe a
signal in terms of its physical properties. Usually, we cannot assign a semantic
meaning to these features. Figure 11 shows the corresponding groups of the
taxonomy.

5.3.1 Autoregression-Based Features

Autoregression analysis is a standard technique in signal processing where a
linear predictor estimates the value of each sample of a signal by a linear com-
bination of previous values. Linear prediction analysis has a long tradition in
audio retrieval and signal coding [152, 178].

Linear predictive coding (LPC). LPC is extensively used in automatic
speech recognition since it takes into account the source-filter model of speech
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production (by employing an all-pole filter) [152]. The goal of LPC is to estimate
basic parameters of a speech signal, such as formant frequencies and the vocal
tract transfer function. LPC is applied in other domains as well, such as audio
segmentation and general purpose audio retrieval where the LPC spectrum is
used as an approximation of the spectral envelope [78, 79, 102].

In practice, the cepstral representation of LPC coefficients is mostly used due
to their higher retrieval efficiency [195]. We address linear prediction cepstral
coefficients (LPCC) in Section 5.5.3.

Line spectral frequencies (LSF). Line spectral frequencies (also called line
spectral pairs) are an alternative representation of linear prediction coefficients.
LSF are obtained by decomposing the linear prediction polynomial into two
separate polynomials. The line spectral frequencies are at the roots of these two
polynomials [24].

LSF characterize the resonances of the linear prediction polynomial together
with their bandwidths [88]. While LSF describe equivalent information to LPC
coefficients, they have statistical properties that make them better suited for
pattern recognition applications [177]. LSF are employed in various applica-
tion domains, such as in speech/music discrimination [41], instrument recogni-
tion [88], and speaker segmentation [108].

5.3.2 Adaptive Time-Frequency Decomposition-Based Features

The short-time Fourier transform (STFT) is widely used in audio feature extrac-
tion for time-frequency decomposition. This can be observed from the signatures
in Tables 5, 6, and 7. However, STFT provides only a suboptimal tradeoff be-
tween time and frequency resolution since the frequency resolution of the STFT
is the same for all locations in the spectrogram. The advantage of adaptive
time-frequency decompositions, like the Wavelet transform is that they provide
a frequency resolution that varies with the temporal resolution.

This group of the taxonomy comprises features that employ Wavelet trans-
form and related transformations for time-frequency decomposition. Features
in this group are based on the transform coefficients. For example, Khan and
Al-Khatib successfully employ the variance of Haar Wavelet coefficients over
several frames for speech/music discrimination in [79]. We consider such fea-
tures as physical features since they do not have a semantic interpretation.

Daubechies Wavelet coefficient histogram features (DWCH). DWCHs
have been proposed by Li et al. for music genre classification in [98]. The au-
thors decompose the audio signal by Daubechies Wavelets and build histograms
from the Wavelet coefficients for each subband. The subband histograms pro-
vide an approximation of the waveform variation in each subband. The first
three statistical moments of each coefficient histogram together with the energy
per subband make up the feature vector. Li et al. show that DWCHs improve
efficiency in combination with traditional features for music genre classifica-
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tion [98]. Further studies on DWCHs in the fields of artist style identification,
emotion detection, and similarity retrieval may be found in [95, 97].

Adaptive time frequency transform (ATFT) features. The ATFT in-
vestigated by Umapathy et al. in [185] is similar to the Wavelet transform. The
signal is decomposed into a set of Gaussian basis functions of several scales,
translations, and center frequencies. The scale parameter varies with the wave-
form envelope of the signal and represents for example rhythmic structures. It
shows that the scale parameter contains discriminatory information for musical
genres.

5.3.3 Short-Time Fourier Transform-Based Features

In this section, we group physical frequency features that employ the short-time
Fourier transform (STFT) for computation of the spectrogram. The STFT
yields real and complex values. The real values represent the distribution of the
frequency components while the complex values carry information on the phase
of the components. Consequently, we distinguish between features that rely on
the frequency distribution (spectral envelope) and features that evaluate the
phase information. First, we present features that capture basic properties of
the spectral envelope: subband energy ratio, spectral flux, spectral slope, and
spectral peaks. Then, we focus on phase-based features, such as the (modified)
group delay function.

Subband energy ratio. The subband energy ratio gives a coarse approxi-
mation of the energy distribution of the spectrum. There are slightly different
definitions concerning the selection of the subbands. Usually, four subbands are
used as in [102]. However, Cai et al. divide the spectrum into eight Mel-scaled
bands in [22]. The feature is extensively used in audio segmentation [76, 168]
and music analysis [127]. See Table 9 in Section 6.2 for further references.

Spectral flux (SF). The SF is the 2-norm of the frame-to-frame spectral
amplitude difference vector [162]. It quantifies (abrupt) changes in the shape
of the spectrum over time. Signals with slowly varying (or nearly constant)
spectral properties (e.g. noise) have low SF, while signals with abrupt spectral
changes (e.g. note onsets) have high SF.

A slightly different definition is provided by Lu et al. in [106] where the
authors compute SF based on the logarithm of the spectrum. Similarly to SF,
the cepstrum flux is defined in [195]. SF is widely used in audio retrieval, e.g. in
speech/music discrimination [76, 78, 79], music information retrieval [95, 180],
and speech analysis [181].

Spectral slope. The spectral slope is a basic approximation of the spectrum
shape by a linear regression line [127]. It represents the decrease of the spectral
amplitudes from low to high frequencies (the spectral tilt) [142]. The slope,
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the y-intersection, the maximum- and median regression error may be used as
features. Spectral slope/tilt may be employed for discrimination of voiced and
unvoiced speech segments.

Spectral peaks. Wang introduces features that allow for a very compact and
noise robust representation of an audio signal. The features are part of an
audio search engine that is able to identify a piece of music by a short segment
captured by a mobile phone [186, 187].

The author first computes the Fourier spectrogram and detects local peaks.
The result is a sparse set of time-frequency pairs - the constellation map. From
the constellation map, pairs of time-frequency points are formed. For each pair,
the two frequency components, the time difference, and the time offset from
the beginning of the audio signal are combined into a feature. Each piece of
music is represented by a large number of such time-frequency pairs. An efficient
and scalable search algorithm proposed by Wang allows for efficiently searching
large databases built from these features. The search system is best described
in [186].

The proposed feature represents a piece of music in terms of spatio-temporal
combinations of dominant frequencies. The strength of the technique is that it
solely relies on the salient frequencies (peaks) and rejects all other spectral
content. This preserves the main characteristics of the spectrum and makes the
representation highly robust to noise since the peak frequencies are usually less
influenced by noise than the other frequencies.

Group delay function (GDF). The features mentioned above take the real
part (magnitude) of the Fourier transform into account. Only a few features
describe the phase information of the Fourier spectrum.

Usually, the phase is featureless and difficult to interpret due to polarity
and wrapping artifacts. The group delay function is the negative derivative of
the unwrapped Fourier transform phase [198]. The GDF reveals meaningful
information from the phase, such as peaks of the spectral envelope.

The GDF is traditionally employed in speech analysis, for example for the
determination of significant excitations [166]. A recent approach applies the
GDF in music analysis for rhythm tracking [163]. Since the GDF is not ro-
bust against noise and windowing effects, the modified GDF is often employed
instead [6].

Modified group delay function (MGDF). The MGDF algorithm applies a
low-pass filter (cepstral smoothing) to the Fourier spectrum prior to computing
the GDF [198]. Cepstral smoothing removes artifacts contributed by noise and
windowing, which makes the MGDF more robust and better suited to speech
analysis than the GDF [6]. The MGDF is employed in various subdomains of
speech analysis, such as speaker identification, phoneme recognition, syllable
detection, and language recognition [60, 61, 132, 134]. Murthy et al. show that
the MGDF robustly estimates formant frequencies in [133].
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Frequency Domain Perceptual

Brightness (5.4.1)

Tonality (5.4.2)

Loudness (5.4.3)

Pitch (5.4.4)

Chroma (5.4.5)

Harmonicity (5.4.6)

Figure 12: The organization of perceptual features in the frequency domain.
In brackets a reference to the section containing the corresponding features is
given.

5.4 Perceptual Frequency Features

So far we have focused on physical frequency features, that have no perceptual
interpretation. In this section, we cover features that have a semantic meaning
in the context of human auditory perception. In the following, we group the
features according to the auditory quality that they describe (see Figure 12).

5.4.1 Brightness

Brightness characterizes the spectral distribution of frequencies and describes
whether a signal is dominated by low or high frequencies, respectively. A sound
becomes brighter as the high-frequency content becomes more dominant and
the low-frequency content becomes less dominant. Brightness is often defined
as the balancing point of the spectrum [102, 162]. Brightness is closely related
to the sensation of sharpness [204].

Spectral centroid (SC). A common approximation of brightness is the SC
(or frequency centroid). It is defined as the center of gravity of the magnitude
spectrum (first moment) [99, 180]. The SC determines the point in the spectrum
where most of the energy is concentrated and is correlated with the dominant
frequency of the signal. A definition of spectral centroid in logarithmic frequency
can be found in [167]. Furthermore, SC may be computed for several frequency
bands as in [154].

The MPEG-7 standard provides further definitions of SC [73]. The MPEG-7
audio spectrum centroid (ASC) differs from the SC in that it employs a power
spectrum in the octave-frequency scale. The ASC approximates the perceptual
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sharpness of a sound [83]. Another definition of SC is the MPEG-7 spectral
centroid. The difference to SC is that MPEG-7 spectral centroid is defined
for entire signals instead of single frames and that the power spectrum is used
instead of the magnitude spectrum. The different definitions of spectral centroid
are very similar, as shown by the signatures in Table 5.

Sharpness. Sharpness is closely related to brightness. Sharpness is a dimen-
sion of timbre that is influenced by the center frequency of narrow-band sounds.
Sharpness grows with the strength of high-frequencies in the spectrum [204]. It
may be computed similarly to the spectral centroid but based on the specific
loudness instead of the magnitude spectrum. A mathematical model of sharp-
ness is provided by Zwicker and Fastl [204]. Sharpness is employed in audio
similarity analysis in [64, 142].

Spectral center. The spectral center is the frequency where half of the energy
in the spectrum is below and half is above that frequency [163]. It describes
the distribution of energy and is correlated with the spectral centroid and thus
with the dominant frequency of a signal. Sethares et al. employ spectral center
together with other features for rhythm tracking in [163].

5.4.2 Tonality

Tonality is the property of sound that distinguishes noise-like from tonal sounds
[204]. Noise-like sounds have a continuous spectrum while tonal sounds typically
have line spectra. For example, white noise has a flat spectrum and consequently
a minimum of tonality while a pure sine wave results in high tonality. Tonality
is related to the pitch strength that describes the strength of the perceived pitch
of a sound (see Section 2.4). Sounds with distinct (sinusoidal) components tend
to produce larger pitch strength than sounds with continuous spectra.

We distinguish between two classes of features that (partially) measure tonal-
ity: flatness measures and bandwidth measures. In the following, we first de-
scribe bandwidth measures (bandwidth, spectral dispersion, and spectral rolloff
point) and then we focus on flatness measures (spectral crest, spectral flatness,
subband spectral flux, and entropy).

Bandwidth. Bandwidth is usually defined as the magnitude-weighted aver-
age of the differences between the spectral components and the spectral cen-
troid [194]. The bandwidth is the second-order statistic of the spectrum. Tonal
sounds usually have a low bandwidth (single peak in the spectrum) while noise-
like sounds have high bandwidth. However, this is not the case for more complex
sounds. For example in music we find broadband signals with tonal character-
istics. The same applies to complex tones with a large number of harmonics,
that may have a broadband line spectrum. Consequently bandwidth may not
be a sufficient indicator for tonality for particular tasks. Additional features
(e.g. harmonicity features, see Section 5.4.6 and flatness features, see below)
may be necessary to distinguish between tonal and noise-like signals.
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Bandwidth may be defined in the logarithmized spectrum or the power spec-
trum [103, 109, 167]. Additionally, it may be computed within one or more
subbands of the spectrum [4, 154].

In the MPEG-7 standard the measure for bandwidth is called spectral spread
[73, 83]. Similarly to the bandwidth measures above, the MPEG-7 audio spec-
trum spread (ASS) is the root-mean-square deviation from the spectrum cen-
troid (MPEG-7 ASC descriptor, see Section 5.4.1). Measures for bandwidth are
often combined with that of spectral centroid in literature since they represent
complementary information [4, 109, 154].

Spectral dispersion. The spectral dispersion is a measure for the spread of
the spectrum around its spectral center [163]. See Section 5.4.1 for a descrip-
tion of spectral center. In contrast to bandwidth, the computation of spectral
dispersion takes the spectral center into account instead of the spectral centroid.

Spectral rolloff point. The spectral rolloff point is the N% percentile of
the power spectral distribution, where N is usually 85% or 95% [162]. The
rolloff point is the frequency below which N% of the magnitude distribution
is concentrated. It increases with the bandwidth of a signal. Spectral rolloff
is extensively used in music information retrieval [96, 127] and speech/music
segmentation [162].

Spectral flatness. Spectral flatness estimates to which degree the frequencies
in a spectrum are uniformly distributed (noise-like) [74]. The spectral flatness
is the ratio of the geometric and the arithmetic mean of a subband in the power
spectrum [154]. The same definition is used by the MPEG-7 standard for the au-
dio spectrum flatness descriptor [73]. Spectral flatness may be further computed
in decibel scale as in [59, 90]. Noise-like sounds have a higher flatness value (flat
spectrum) while tonal sounds have lower flatness values. Spectral flatness is
often used (together with spectral crest factor) for audio fingerprinting [65, 90].

Spectral crest factor. The spectral crest factor is a measure for the “peak-
iness” of a spectrum and is inversely proportional to the flatness. It is used to
distinguish noise-like and tone-like sounds due to their characteristic spectral
shapes. Spectral crest factor is the ratio of the maximum spectrum power and
the mean spectrum power of a subband. In [90] the spectral crest factor is ad-
ditionally logarithmized. For noise-like sounds the spectral crest is lower than
for tonal sounds. A traditional application of spectral crest factor is fingerprint-
ing [65, 90, 154].

Subband spectral flux (SSF). The SSF has been introduced by Cai et
al. in [22] for the recognition of environmental sounds. The feature is a mea-
sure for the portion of prominent partials (“peakiness”) in different subbands.
SSF is computed from the logarithmized short-time Fourier spectrum. For each
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subband the SSF is the accumulation of the differences between adjacent fre-
quencies in that subband. SSF is low for flat subbands and high for subbands
that contain distinct frequencies. Consequently, SSF is inversely proportional
to spectral flatness.

Entropy. Another measure that correlates with the flatness of a spectrum is
entropy. Usually, Shannon- and Renyi entropy are computed in several sub-
bands [154]. The entropy represents the uniformity of the spectrum. A multi-
resolution entropy feature is proposed by Misra et al. in [121, 122]. The au-
thors split the spectrum into overlapping Mel-scaled subbands and compute the
Shannon entropy for each subband. For a flat distribution in the spectrum the
entropy is low while a spectrum with sharp peaks (e.g. formants in speech) has
high entropy. The feature captures the “peakiness” of a subband and may be
used for speech/silence detection and automatic speech recognition.

5.4.3 Loudness

Loudness features aim at simulating the human sensation of loudness. Loud-
ness is “that attribute of auditory sensation in terms of which sounds may be
ordered on a scale extending from soft to loud” [7]. The auditory system incor-
porates a number of physiological mechanisms that influence the transformation
of the incoming physical sound intensity into the sensational loudness [204]. See
Section 3.3 for a summary of important effects.

Specific Loudness Sensation (Sone). Pampalk et al. propose a feature
that approximates the specific loudness sensation per critical band of the hu-
man auditory system [139]. The authors first compute a Bark-scaled spectro-
gram and then apply spectral masking and equal-loudness contours (expressed
in phon). Finally, the spectrum is transformed to specific loudness sensation
(in sone). The feature is the basis for rhythm patterns (see Section 5.6.1). The
representation in sone may be applied to audio retrieval as in [127, 128].

Integral Loudness. The specific loudness sensation (sone) gives the loudness
of a single sine tone. A spectral integration of loudness over several frequencies
enables the estimation of the loudness of more complex tones [204]. Pfeiffer
proposes an approach to compute the integral loudness by summing up the
loudness in different frequency groups [144]. The author empirically shows that
the proposed method closely approximates the human sensation of loudness.
The integral loudness feature is applied to foreground/background segmentation
in [147].

5.4.4 Pitch

Pitch is a basic dimension of sound, together with loudness, duration, and tim-
bre. The hearing sensation of pitch is defined as “that attribute of auditory
sensation in terms of which sounds may be ordered on a scale extending from
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low to high” [7]. The term pitch is widely used in literature and may refer
to both, a stimulus parameter (fundamental frequency or frequency of glot-
tal oscillation) and an auditory sensation (the perceived frequency of a signal)
depending on the application domain.

In this section, we first focus on features that capture the fundamental fre-
quency and then present a technique that models the psychoacoustic pitch.
Features that describe pitch are correlated to chroma and harmonicity features
(see Sections 5.4.5 and 5.4.6).

Fundamental frequency. The fundamental frequency is the lowest frequency
of a harmonic series and is a coarse approximation of the psychoacoustic pitch.
Fundamental frequency estimation employs a wide range of techniques, such as
temporal autocorrelation, spectral, and cepstral methods and combinations of
these techniques. An overview of techniques is given in [66].

The MPEG-7 standard proposes a descriptor for the fundamental frequency
(MPEG-7 audio fundamental frequency) which is defined as the first peak of
the local normalized spectro-temporal autocorrelation function [29, 73]. Funda-
mental frequency is employed in various application domains [33, 180, 194].

Pitch Histogram. The pitch histogram describes the pitch content of a sig-
nal in a compact way and has been introduced for musical genre classification
in [179, 180]. In musical analysis pitch usually corresponds to musical notes. The
pitch histogram is a global representation that aggregates the pitch information
of several short audio frames. Consequently, the pitch histogram represents the
distribution of the musical notes in a piece of music. A similar histogram-based
technique is the beat histogram that represents the rhythmic content of a signal
(see Section 5.6.1).

Psychoacoustic Pitch. Meddis and O’Mard propose a method to model
human pitch perception in [115]. First the authors apply a band-pass filter
to the input signal to emphasize the frequencies relevant for pitch perception.
Then the signal is decomposed with a gammatone filter bank that models the
frequency selectivity of the cochlea. For each subband an inner hair-cell model
transforms the instantaneous amplitudes into continuous firing probabilities. A
running autocorrelation function is computed from the firing probabilities in
each subband. The resulting autocorrelation functions are summed across the
channels in order to obtain the final feature.

In contrast to other pitch detection techniques, the output of this algorithm
is a series of values instead of one single pitch value. These values represent a
range of frequencies relevant for pitch perception. Meddis and O’Mard point
out that a single pitch frequency is not sufficient for approximation of the pitch
perception of complex sounds. Consequently, they employ all values of the
feature for matching pitches of different sounds.
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5.4.5 Chroma

According to Shepard the sensation of musical pitch may be characterized by
two dimensions: tone height and chroma [165]. The dimension of tone height
is partitioned into the musical octaves. The range of chroma is usually divided
into 12 pitch classes, where each pitch class corresponds to one note of the
twelve-tone equal temperament. For example, the pitch class C contains the Cs
of all possible octaves (C0, C1, C2, ...). The pitches (musical notes) of the same
pitch class share the same chroma and produce a similar auditory sensation.
Chroma-based representations are mainly used in music information analysis
and retrieval since they provide an octave invariant representation of the signal.

Chromagram. The chromagram is a spectrogram that represents the spec-
tral energy of each of the 12 pitch classes [13]. It is based on a logarithmized
short-time Fourier spectrum. The frequencies are mapped (quantized) to the
12 pitch classes by an aggregation function. The result is a 12 element vector
for each audio frame. A similar algorithm for the extraction of chroma vectors
is presented in [54].

The chromagram maps all frequencies into one octave. This results in a
spectral compression that allows for a compact description of harmonic signals.
Large harmonic series may be represented by only a few chroma values, since
most harmonics fall within the same pitch class [13]. The chromagram represents
an octave-invariant (compressed) spectrogram that takes properties of musical
perception into account.

Chroma energy distribution normalized statistics (CENS). CENS fea-
tures are another representation of chroma, introduced for music similarity
matching by Müller et al. in [130] and by in Müller in [129]. The CENS
features are robust against tempo variations and different timbres which makes
them suitable for the matching of different interpretations of the same piece of
music.

Pitch Profile. The pitch profile is a more accurate representation of the pitch
content than the chroma features [202]. It takes pitch mistuning (introduced
by mistuned instruments) into account and is robust against noisy percussive
sounds (e.g. sounds of drums that do not have a pitch). Zhu and Kankanhalli
apply the pitch profile in musical key detection and show that the pitch profile
outperforms traditional chroma features [202].

5.4.6 Harmonicity

Harmonicity is a property that distinguishes periodic signals (harmonic sounds)
from non-periodic signals (inharmonic and noise-like sounds). Harmonics are
frequencies at integer multiples of the fundamental frequency. Figure 13 presents
the spectra of a noise-like (inharmonic) and a harmonic sound. The harmonic
spectrum shows peaks at the fundamental frequency and its integer multiples.
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Figure 13: (a) The spectrum of a noise-like sound (thunder). (b) The spectrum
of a harmonic sound (siren). The harmonic sound has peaks at multiples of the
fundamental frequencies (the harmonic peaks are marked by asterisks), while
the noise-like sound has a flat spectrum.

Harmonicity relates to the proportion of harmonic components in a sig-
nal. Harmonicity features may be employed to distinguish musical instruments.
For example harmonic instrument sounds (e.g. violins) have stronger harmonic
structure than percussive instrument sounds (e.g. drums). Furthermore, har-
monicity may be useful in environmental sound recognition in order to dis-
tinguish between harmonic (e.g. bird song) and inharmonic (e.g. dog barks)
sounds.

MPEG-7 audio harmonicity. The audio harmonicity descriptor of the MPEG-
7 standard comprises two measures. The harmonic ratio is the ratio of the fun-
damental frequency’s power to the total power in an audio frame [73, 83]. It is
a measure for the degree of harmonicity contained in a signal. The computation
of harmonic ratio is similar to that of MPEG-7 audio fundamental frequency,
except for the used autocorrelation function.

The second measure in the audio harmonicity descriptor is the upper limit
of harmonicity. The upper limit of harmonicity is the frequency beyond which
the spectrum no longer has any significant harmonic structure. It may be re-
garded as the bandwidth of the harmonic components. The audio harmonicity
descriptor is well-suited for the distinction of periodic (e.g. musical instruments,
voiced speech) and non-periodic (e.g. noise, unvoiced speech) sounds.

A similar feature is the harmonic coefficient which is defined as the first
maximum in the (spectro-temporal) autocorrelation function in [31]. Note that
the definition is nearly equivalent to that of harmonic ratio, except for the
employed autocorrelation function.

Inharmonicity measures. Most real world harmonic signals do not show
a perfect harmonic structure. Inharmonicity features measure the difference
between observed harmonics and their theoretical (predicted) values which are
exactly at integer multiples of the fundamental frequency.
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A straight-forward cumulative measure for the deviation of the harmonics
from their predicted values is presented in [4] and [142]. A more enhanced and
more accurate feature is harmonicity prominence which additionally takes the
energy and the bandwidth of each harmonic component into account [22].

A related feature is spectral peak structure which is the entropy of the dis-
tances of adjacent peaks in the spectrum. For perfect harmonic sounds these
distances are constant, while for non-harmonic sounds the distances may vary.
Consequently, the entropy of the distances is a measure for inharmonicity.

MPEG-7 spectral timbral descriptors. The MPEG-7 standard defines a
set of descriptors for the harmonic structure of sounds: MPEG-7 harmonic
spectral centroid (HSC), MPEG-7 harmonic spectral deviation (HSD), MPEG-
7 harmonic spectral spread (HSS), and MPEG-7 harmonic spectral variation
(HSV) [73, 143]. All descriptors are based on an estimate of the fundamental
frequency and the detection of harmonic peaks in the spectrum (see the signa-
tures in Table 6. The descriptors represent statistical properties (moments) of
the harmonic frequencies and their amplitudes.

The HSC is the amplitude-weighted average of the harmonic frequencies.
Similarly to spectral centroid (see Section 5.4.1) HSC is related to brightness
and sharpness [83].

The HSS descriptor is the power-weighted root-mean-square deviation of the
harmonic peaks from the HSC. It represents the bandwidth of the harmonic fre-
quencies. HSC and HSS are first and second moment of the harmonic spectrum
similarly to spectral centroid and bandwidth (spectral spread) which are first
and second moment of the entire spectrum.

HSD measures the amplitude deviation of harmonic peaks from their neigh-
boring harmonic peaks in the same frame. If all harmonic peaks have equal
amplitude HSD reaches its minimum. While HSS represents the variation of
harmonic frequencies, HSD reflects the variation of harmonics’ amplitudes.

The HSV descriptor represents the correlation of harmonic peak amplitudes
in two adjacent frames. It represents fast variations of harmonic structures
over time. The MPEG-7 spectral timbral descriptors address musical instru-
ment recognition, where the harmonic structure is an important discriminative
property [143].

Further harmonicity features. Srinivasan and Kankanhalli introduce har-
monicity features for classification of music genre and instrument family in [167].
Harmonic concentration measures the fraction of energy of the dominant har-
monic component of the signal. Harmonic energy entropy describes the energy
distribution of the harmonic components by computing the entropy of their en-
ergies. Finally, Srinivasan and Kankanhalli define the harmonic derivate as the
difference of the energy of adjacent harmonic frequencies. The feature represents
the decay of harmonic energy with increasing frequency.

There is a large number of features that capture harmonic properties in
literature. Harmonicity features are related to pitch- and chroma features. Ad-
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ditionally, they are correlated to a high degree due to methodological similarities
which may be observed from the signatures in Table 6.

5.5 Cepstral Features

The concept of the “cepstrum” has been originally introduced by Bogert et al.
in [16] for the detection of echoes in seismic signals. In the domain of audio, cep-
stral features have first been employed for speech analysis [18, 37, 136]. Cepstral
features are frequency smoothed representations of the log magnitude spectrum
and capture timbral characteristics and pitch. Cepstral features allow for ap-
plication of the Euclidean metric as distance measure due to their orthogonal
basis which facilitates similarity comparisons [37]. Today, cepstral features are
widely used in all fields of audio retrieval (speech-, music-, and environmental
sound analysis), e.g. [101, 196].

We have identified three classes of cepstral features. The first group employs
traditional filter banks, such as Mel- and Bark-filters. The second group bases
on more elaborate auditory models. The third group are cepstral features that
apply autoregression.

5.5.1 Perceptual Filter Bank-Based Features

Bogert et al. define the cepstrum as the Fourier Transform (FT) of the logarithm
(log) of the magnitude (mag) of the spectrum of the original signal [16].

signal → FT → mag → log → FT → cepstrum

This sequence is the basis for the cepstral features described in this section.
However, in practice the computation slightly differs from this definition. For
example, the second Fourier transform is often replaced by a DCT due to its
ability to decorrelate output data.

Mel-frequency cepstral coefficients (MFCCs). MFCCs originate from
automatic speech recognition but evolved into one of the standard techniques
in most domains of audio retrieval. They represent timbral information (the
spectral envelope) of a signal. MFCCs have been successfully applied to timbre
measurements by Terasawa et al. in [174].

Computation of MFCCs includes a conversion of the Fourier coefficients to
Mel-scale [171]. After conversion, the obtained vectors are logarithmized, and
decorrelated by DCT in order to remove redundant information.

The components of MFCCs are the first few DCT coefficients that describe
the coarse spectral shape. The first DCT coefficient represents the average
power in the spectrum. The second coefficient approximates the broad shape
of the spectrum and is related to the spectral centroid. The higher-order coef-
ficients represent finer spectral details (e.g. pitch). In practice, the first 8-13
MFCC coefficients are used to represent the shape of the spectrum. However,
some applications require more higher-order coefficients to capture pitch and
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tone information. For example in Chinese speech recognition up to 20 cepstral
coefficients may be beneficial [190].

Variations of MFCCs. In the course of time several variations of MFCCs
have been proposed. They mainly differ in the applied psychoacoustic scale.
Instead of the Mel-scale, variations employ the Bark- [203], ERB- [126] and
octave-scale [111]. A typical variation of MFCCs are Bark-frequency cepstral
coefficients (BFCCs). However, cepstral coefficients based on the Mel-scale are
the most popular variant used today, even if there is no theoretical reason that
the Mel-scale is superior to the other scales.

Extensions of MFCCs. A noise-robust extension of MFCCs are autocorre-
lation MFCCs proposed by Shannon and Paliwal in [164]. The main difference
is the computation of an unbiased autocorrelation from the raw signal. Partic-
ular autocorrelation coefficients are removed in order to filter noise. From this
representation more noise-robust MFCCs are extracted.

Yuo et al. introduce two noise-robust extensions of MFCCs, namely RAS-
MFCCs and CHNRAS-MFCCs in [199]. The features introduce a preprocessing
step to the standard computation of MFCCs that filters additive and convolu-
tional noise (cannel distortions) by cepstral mean substraction.

Another extension of MFCCs is introduced in [30]. Here, the outputs of
the Mel-filters are weighted according to the amount of estimated noise in the
bands. The feature improves accuracy of automatic speech recognition in noisy
environments.

Li et al. propose a novel feature that may be regarded as an extension of
Bark-frequency cepstral coefficients [93]. The feature incorporates additional
filters that model the transfer function of the cochlea. This enhances the ability
to simulate the human auditory system and improves performance in noisy
environments.

5.5.2 Advanced Auditory Model-Based Features

Features in this group base on an auditory model that is designed to closely
represent the physiological processes in human hearing.

Noise-robust audio features (NRAF). NRAF are introduced in [156] and
are derived from a mathematical model of the early auditory system [197]. The
auditory model yields a psychoacoustically motivated time-frequency represen-
tation which is called the auditory spectrum. A logarithmic compression of
the auditory spectrum models the behavior of the outer hair cells. Finally, a
DCT decorrelates the data. The temporal mean and variance of the resulting
decorrelated spectrum make up the components of NRAF. The computation of
NRAF is similar to that of MFCCs but it follows the process of hearing in a
more precise way. A related audio feature of NRAF are rate-scale-frequency
features addressed in Section 5.7.
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5.5.3 Autoregression-Based Features

Features in this group are cepstral representations that base on linear predictive
analysis (see Section 5.3.1).

Perceptual linear prediction (PLP). PLP was introduced by Hermansky
in 1990 for speaker-independent speech recognition [62]. It bases on the concepts
of hearing and employs linear predictive analysis for the approximation of the
spectral shape. In the context of speech PLP represents speaker-independent
information, such as vocal tract characteristics. It better represents the spec-
tral shape than conventional linear prediction coding (LPC) by approximating
several properties of human hearing. The feature employs Bark-scale as well as
asymmetric critical-band masking curves in order to achieve a higher grade of
consistency with human hearing.

Relative spectral - perceptual linear prediction (RASTA-PLP). RASTA-
PLP is an extension of PLP introduced by Hermansky and Morgan in [63]. The
objective of RASTA-PLP is to make PLP more robust to linear spectral dis-
tortions. The authors filter each frequency channel with a bandpass filter in
order to alleviate fast variations (frame to frame variations introduced by the
short-time analysis) and slow variations (convolutional noise introduced by the
communication channel). RASTA PLP better approximates the human abilities
to filter noise than PLP and yields a more robust representation of the spectral
envelope under noisy conditions.

Linear prediction cepstrum coefficients (LPCCs). LPCCs are the in-
verse Fourier transform of the log magnitude frequency response of the au-
toregressive filter. They are an alternative representation for linear prediction
coefficients and thus capture equivalent information. LPCCs may be directly
derived from the LPC coefficients presented in Section 5.3.1 with a recursion
formula [8].

In practice, LPCCs have shown to perform better than LPC coefficients,
e.g. in automatic speech recognition, since they are a more compact and robust
representation of the spectral envelope [2]. In contrast to LPC they allow for
the application of the Euclidean distance metric. The traditional application
domain of LPCCs is automatic speech recognition. However, LPCCs may be
employed in other domains, such as music information retrieval as well [195].

5.6 Modulation Frequency Features

Modulation frequency features capture low-frequency modulation information
in audio signals. A modulated signal contains at least two frequencies: a high
carrier frequency and a comparatively low modulation frequency. Modulated
sounds cause different hearing sensations in the human auditory system. Low
modulation frequencies up to 20 Hz produce the hearing sensation of fluctuation
strength [204]. Higher modulation frequencies create the hearing sensation of
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Figure 14: (a) The spectrogram of a 6 second excerpt of “Rock DJ” by Robbie
Williams. (b) The modulation spectrogram reveals modulation frequencies at
3 Hz and 6 Hz. The modulation frequencies relate to the main beat and the sub
beats of the song.

roughness. Modulation information is a long-term signal variation of amplitude
or frequency that is usually captured by a temporal (interframe) analysis of the
spectrogram.

Rhythm and tempo are aspects of sound (especially important in music)
that are strongly related to long-time modulations. Rhythmic structures (e.g.
sequences of equally spaced beats or pulses) may be revealed by analyzing low-
frequency modulations over time. Figure 14 shows a short-time Fourier spec-
trogram together with the corresponding modulation spectrogram of a piece
of music. The spectrogram represents the distribution of acoustic frequencies
over time, while the modulation spectrogram shows the distribution of long-term
modulation frequencies for each acoustic frequency. In Figure 14 we observe two
strong modulation frequencies at 3 Hz and 6 Hz that are distributed over all
critical bands. These frequencies relate to the main and sub beats of the song.
We discuss features that represent rhythm and tempo-related information in
Section 5.6.1.

4 Hz modulation energy. The hearing sensation of fluctuation strength has
its peak at 4 Hz modulation frequency (for both, amplitude- and frequency
modulated sounds) [46, 67]. This is the modulation frequency that is most of-
ten observed in fluent speech, where approximately four syllables per second
are produced. Hence, the 4 Hz modulation energy may be employed for distin-
guishing speech from non-speech sounds.

Scheirer and Slaney extract the 4 Hz modulation energy by a spectral analy-
sis of the signal [162]. They filter each subband by a 4 Hz band-pass filter along
the temporal dimension. The filter outputs represent the 4 Hz modulation en-
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ergy. A different definition that derives the 4 Hz modulation energy is given
in [104].

Similarly to 4 Hz modulation frequency, Ghou and Gu define the 4 Hz modu-
lation harmonic coefficient which actually is an estimate of the 4 Hz modulation
energy of the fundamental frequency of a signal [31]. The authors report that
this feature better discriminates speech from singing than the 4 Hz modulation
frequency.

Joint acoustic and modulation frequency features. Sukittanon and At-
las propose a feature for audio fingerprinting that represents the distribution
of modulation frequencies in the critical bands [172]. The feature is a time-
invariant representation and captures time-varying (non-stationary) behavior
of an audio signal.

The authors first decompose the input signal into a Bark-scaled spectro-
gram. Then they demodulate the spectrogram by extracting frequencies of
each subband envelope. A Wavelet transform produces one modulation fre-
quency vector for each subband. The output of this procedure is a matrix
(a modulation spectrogram) that contains the modulation frequencies for each
acoustic frequency band. The modulation spectrogram is constant in size and
time-invariant. Hence, it may be vectorized in order to build a feature vector
(fingerprint) for retrieval.

Sukittanon et al. show that their modulation frequency feature outperforms
MFCCs in presence of noise and time-frequency distortions [173]. A similar
feature are rhythm patterns which have been developed for music similarity
matching. We present rhythm patterns together with other rhythm-related
features in Section 5.6.1 below.

A spectral representation that takes the temporal resolution of modula-
tion information into account is the modulation spectrogram by Greenberg and
Kingsbury [55]. In contrast to the features mentioned above, the modulation
spectrogram shows the distribution of slow modulations across time and fre-
quency. Experiments show that it is more robust to noise than the narrow-band
spectrogram.

Auditory filter bank temporal envelopes. McKinney and Breebaart present
another approach for the computation of modulation frequency features in [114].
They employ logarithmically spaced gamma tone filters for subband decomposi-
tion. The resulting subband envelopes are band-pass filtered in order to obtain
modulation information. The feature represents modulation energy for partic-
ular acoustic frequency bands similarly to the joint acoustic and modulation
frequency features (see above). The features have been successfully employed
for musical genre classification and general purpose audio classification.

5.6.1 Rhythm

Rhythm is a property of an audio signal that represents a change pattern of
timbre and energy over time [201]. According to Zwicker and Fastl, the hear-
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ing sensation of rhythm depends on the temporal variation of loudness [204].
Rhythm is an important element in speech and music. In speech, rhythm re-
lates to stress and pitch and in music it relates to the tempo of a piece of music
(in beats-per-minute). Rhythm may be important for the characterization of
environmental sounds as well, for example for the description of footsteps [201].

Rhythm is a property that evolves over time. Consequently, the analysis win-
dows of rhythm features are usually longer than that of other features. Typical
analysis windows are in the range of a few seconds (≈ 3-5s) [180]. Rhythmic
patterns are usually obtained by analyzing low-frequency amplitude modula-
tions.

We first present two features that measure the strength of a rhythmic vari-
ation in a signal (pulse metric and band periodicity). Then we summarize fea-
tures that estimate the main- and sub beats in a piece of music (beat spectrum
representations, beat tracker) and finally we address features that globally rep-
resent the rhythmic structure of a piece of music (beat histograms and rhythm
patterns).

Pulse metric. A measure for the “rhythmicness” of sound is proposed by
Scheirer and Slaney in [162]. They detect rhythmic modulations by identifying
peaks in the autocorrelation function of several subbands. The pulse metric is
high when the autocorrelations in all subbands show peaks at similar positions.
This indicates a strong rhythmic structure in the sound.

Band periodicity. The band periodicity also measures the strength of rhyth-
mic structures and is similar to pulse metric [106]. The signal is split into sub-
bands and the maximum peak of the subband correlation function is estimated
for each analysis frame. The band periodicity for a subband is the mean of the
peaks in all frames. It correlates with the rhythm content of a signal, since it
captures the strength of repetitive structures over time.

Beat spectrum (beat spectrogram). The beat spectrum represents the
self-similarity of a signal for different time lags (similarly to autocorrelation) [49,
50]. The peaks in the beat spectrum indicate strong beats with a specific repeti-
tion rate. Hence, this representation allows a description of the rhythm content
of a signal. The peaks correspond to note onsets with high periodicity.

The beat spectrum is computed for several audio frames in order to obtain
the beat spectrogram. Each column of the beat spectrogram is the beat spec-
trum of a single frame. The beat spectrogram shows the rhythmic variation
of a signal over time. It is a two-dimensional representation that has the time
dimension on the abscissa and the lag time (repetition rate or tempo) on the
ordinate. The beat spectrogram visualizes how the tempo changes over time
and allows for a detailed analysis of the rhythmic structures and variations.

Note that the beat spectrogram represents similar information as the joint
acoustic and modulation frequency feature (see above). Both representations
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capture rhythmic content of a signal. However, the beat spectrogram repre-
sents the variation of tempo over time while the joint acoustic and modulation
representation reveals rhythmic patterns independently of time. The difference
between both representations is that the beat spectrogram provides temporal
information while it neglects the distribution of acoustic frequencies and the
modulation spectrogram preserves acoustic frequencies and neglects time. Both
complement each other.

The beat spectrum serves as a basis for onset detection and the determi-
nation of rhythmically similar music. It may be used for the segmentation of
pieces of music into rhythmically different parts, such as chorus and verse.

Cyclic beat spectrum. A related representation to the beat spectrum is the
cyclic beat spectrum (CBS) [89]. The CBS is a compact and robust representa-
tion of the fundamental tempo of a piece of music. Tempo analysis with the beat
spectrum reveals not only the fundamental tempo but also corresponding tem-
pos with a harmonic and subharmonic relationship to the fundamental tempo
(e.g. 1/2-, 1/3-, 2-, 3-,... fold tempo). The cyclic beat spectrum groups tempos
belonging to the same fundamental tempo into one tempo class. This grouping
is similar to the grouping of frequencies into chroma classes (see Section 5.4.5).

The CBS is derived from a beat spectrum. Kurth et al. first low-pass
filter the signal (to remove timbre information that may be neglected for tempo
analysis) and compute a spectrogram by short-time Fourier transform. They
derive a novelty curve by summing the differences between adjacent spectral
vectors. The novelty curve is then analyzed by a bank of comb filters where
each comb filter corresponds to a particular tempo. This analysis results in
a beat spectrogram where peaks correspond to dominant tempos. The beat
spectrum is divided into logarithmically scaled tempo octaves (tempo classes)
similarly to pitch classes in the context of chroma. The CBS is obtained by
aggregating the beat spectrum over all tempo classes.

The CBS robustly estimates one or more significant and independent tempos
of a signal and serves as a basis for the analysis of rhythmic structures. Kurth et
al. employ the beat period (derived from the CBS) together with more complex
rhythm and meter features for time-scale invariant audio retrieval [89].

Beat tracker. An important rhythm feature is Scheirer’s beat tracking algo-
rithm which enables the determination of tempo and beat positions in a piece of
music [160, 161]. The algorithm starts with a decomposition of the input signal
into subbands. Each subband envelope is analyzed by a bank of comb filters
(resonators). The resonators extract periodic modulations from the subband
envelopes and are related to particular tempos. The resonator’s outputs are
summed over all subbands in order to obtain an estimate for each tempo un-
der consideration. The frequency of the comb filter with the maximum energy
output represents the tempo of the signal.

An advantage of using comb filters instead of autocorrelation methods for
finding periodic modulations is that they allow for the detection of the beat posi-
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tions and thus enable beat-tracking. Scheirer tracks beat positions by analyzing
the phase information preserved by the comb filters. The author empirically
shows that the proposed technique approximates the beat-tracking abilities of
human listeners. See [160] for a comparison of comb filters with autocorrelation
methods and more details on the beat-tracking algorithm.

Beat histogram. The beat histogram is a compact global representation of
the rhythm content of a piece of music [180, 183]. It describes the repetition
rates of main beat and sub beats together with their strength. Similarly to other
rhythm features, the computation is based on periodicity analysis in multiple
frequency bands. The authors employ Wavelet transform in order to obtain an
octave-frequency decomposition. They detect the most salient periodicities in
each subband and accumulate them into a histogram. This process is similar to
that of pitch histograms in Section 5.4.4.

Each bin of the histogram corresponds to a beat period in beats-per-minute
where peaks indicate the main- and sub beats. The beat histogram compactly
summarizes all occurring beat periods (tempos) in a piece of music. The beat
histogram is designed for music information retrieval, especially genre classifica-
tion. A measure for the beat strength may be easily derived from the beat his-
togram as in [184]. Grimaldi et al. introduce a derivation of the beat histogram
in [56] that builds upon the discrete Wavelet packet transform (DWPT) [112].

Rhythm patterns. Rhythm patterns are proposed for music similarity re-
trieval by Pampalk et al. in [139]. They build upon the specific loudness sensa-
tion in sone (see Section 5.4.3). Given the spectrogram (in specific loudness) the
amplitude modulations are extracted by a Fourier analysis of the critical bands
over time. The extracted modulation frequencies are weighted according to the
fluctuation strength to approximate the human perception [204]. This results
in a two-dimensional representation of acoustic versus modulation frequency.
A detailed description of the computation is given in [155]. Note that rhythm
patterns are similar to the joint acoustic and modulation frequency features
mentioned above.

5.7 Eigendomain Features

Features in this group represent long-term information contained in sound seg-
ments that have a duration of several seconds. This leads to large amounts of
(redundant) feature data with low expressiveness that may not be suitable for
further processing (e.g. classification).

Statistical methods may be applied in order to reduce the amount of data in
a way that preserves the most important information. The employed statistical
methods usually decorrelate the feature data by factorization. The resulting
representation allows for dimensionality reduction by removing factors with low
influence. Methods such as Principal Components Analysis (PCA) and Singular
Value Decomposition (SVD) are standard techniques for this purpose.
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Rate-scale-frequency (RSF) features. Ravindran et al. introduce RSF
features for general purpose sound recognition in [156]. The computation of the
features relies on a model of the auditory cortex and the early auditory model,
used for noise-robust audio features (see NRAF in Section 5.5.2). RSF features
describe modulation information for selected frequency bands of the auditory
spectrum. Ravindran et al. apply a two-dimensional Wavelet transform to the
auditory spectrum in order to extract temporal and spatial modulation infor-
mation resulting in a three-dimensional representation. They perform PCA for
compression and decorrelation of the data in order to obtain an easily process-
able fingerprint.

MPEG-7 audio spectrum basis/projection. The MPEG-7 standard de-
fines the combination of audio spectrum basis (ASB) and audio spectrum pro-
jection (ASP) descriptors for general purpose sound recognition [73, 82]. ASB
is a compact representation of the short-time spectrogram of a signal. The
compression of the spectrogram is performed by Singular Value Decomposition.
ASB contains the coarse frequency distribution of the entire spectrogram. This
makes it suitable for general purpose sound recognition. The ASP descriptor is
a projection of a spectrogram against a given audio spectrum basis. ASP and
ASB are usually combined in a retrieval task as described in [83].

Distortion discriminant analysis (DDA). DDA features are used for noise-
robust fingerprinting [19]. Initially, the signal is transformed using a modulated
complex lapped transform (MCLT) which yields a time-frequency representa-
tion [113]. The resulting spectrogram is passed to a hierarchy of oriented Prin-
cipal Component Analyses to subsequently reduce the dimensionality of the
spectral vectors and to remove distortions. This hierarchical application of the
oriented Principal Component Analysis yields a compact time-invariant and
noise-robust representation of the entire sound.

DDA generates features that are robust to several types of noise and dis-
tortions, such as time-shifts, frequency distortions, and compression artifacts.
Burges et al. point out that DDA is even robust against types of noise that are
not present in the training set [20].

5.8 Phase Space Features

In speech production non-linear phenomena, such as turbulence have been ob-
served in the vocal tract [87]. Features in the domains mentioned so far (tem-
poral, frequency, cepstral, etc.) are not able to capture non-linear phenomena.
The state space represents a domain that reveals the non-linear behavior of a
system. However, in general it is not possible to extract the state space for an
audio signal, since not all necessary variables may be derived from the audio sig-
nal. Alternatively, the reconstructed phase space, an approximation that shares
important properties with the state space, may be computed. For phase space
reconstruction the original audio signal is considered to be a one-dimensional
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projection of the dynamic system. The reconstructed phase space is built by
creating time-lagged versions of the original signal. The original signal is shifted
by multiples of a constant time lag. Each dimension of the reconstructed phase
space relates to a delayed version of the original signal. The dimension of the
reconstructed phase space corresponds to the number of time-lagged versions
of the original signal. The critical steps in phase space reconstruction are the
determination of embedding dimension and time lag. An extensive description
of phase space reconstruction is given in [1]. The possibly high-dimensional
attractor of the system unfolds in the phase space if time-lag and embedding
dimension are properly selected. Several parameters of the attractor may serve
as audio features.

The Lyapunov exponents of the attractor measure the “degree of chaos” of
a dynamic system. Kokkinos and Maragos employ Lyapunov exponents for the
distinction of different phonemes in speech [87]. They observe that phonemes,
such as voiced and unvoiced fricatives, (semi)vowels, and stop sounds may be
characterized by their Lyapunov exponents due to the different degree of chaos
in these phonemes.

Lindgren et al. employ the natural distribution of the attractor together
with its first derivative as features for phoneme recognition [100]. The natural
distribution describes the spatial arrangement of the points of the attractor, i.e.
the coarse shape of the attractor. The first derivative characterizes the flow or
trajectory of the attractor over time.

Further features derived from reconstructed phase space are dimension mea-
sures of the attractor, such as fractal dimension [87] and correlation dimen-
sion [149].

Bai et al. show that phase space features are well-suited for musical genre
classification [10]. They compute the angles between vectors in phase space and
employ the variance of these angles as features.

Phase space features capture information that is orthogonal to features that
originate from linear models. Experiments show that recognition solely based
on phase space features is poor compared to results of standard features, such
as MFCCs [100]. Consequently, phase space features are usually combined with
traditional features in order to improve accuracy of recognition.

6 Related Literature

6.1 Application Domains

In the following we briefly present the application domains that we cover in this
article together with selected references to relevant publications. The major
research areas in audio processing and retrieval are automatic speech recognition
(ASR), music information retrieval, environmental sound recognition (ESR),
and audio segmentation. Audio segmentation (often called audio classification)
is a preprocessing step in audio analysis that separates different types of sound
e.g. speech, music, environmental sounds, silence, and combinations of these
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sounds [79, 156]. Subdomains of audio segmentation address silence detection
[14, 145], the segmentation of speech and non-speech [68], and the segmentation
of speech and music [140].

The segmented audio stream may be further analyzed by more specific anal-
ysis methods. ASR is probably the best investigated problem of audio retrieval
[151]. However, there is still active research on audio features for ASR [6, 30, 87].
Related fields of research are speaker recognition and speaker segmentation
[91, 199]. Speaker recognition deals with the identification of the speaker in
an audio stream. Applications of speaker identification are authentication in
safety systems and user recognition in dialog systems. Speaker segmentation
determines the beginning and end of a speech segment of a particular speaker
[108]. Another discipline dealing with speech is language identification where
systems automatically predict the language of a speaker [45, 58, 135, 176].

Recent approaches aim at the recognition and assessment of stress and other
emotions in spoken language which may help to design mood driven human
computer interfaces [33, 70, 137, 157]. Further domains of speech processing are
gender detection and age detection from speech [119, 181]. A novel approach is
speech analysis in medical applications for the detection of illnesses that affect
human speech [15].

This article further focuses on ESR-related techniques. A typical application
is the classification of general-purpose sounds, such as dog barks, flute sounds
or applause, which require specialized audio features [28, 102, 138]. Typical
ESR tasks are surveillance applications where the environment is scanned for
unusual sounds [153]. Furthermore, video analysis and annotation is a popular
domain that deals with environmental sounds. Important tasks are violence
detection in feature films [146] and highlight detection in video. Highlight de-
tection addresses identification of key scenes in videos, for example in sports
videos [22, 189]. Multimodal approaches improve the detection rate by combin-
ing auditory and visual information [27]. Another application is the analysis of
affective dimensions in the sound track of feature films (e.g. arousal, valence)
[25].

Additionally, ESR covers pattern recognition in bioacoustics. Bioacoustic
pattern recognition deals among others with acoustic monitoring of animals in
the wild and the discrimination and retrieval of animal sounds, such as bird
song and whale sounds [32, 123].

This article further addresses features related to music information retrieval
(MIR). MIR is a rapidly growing field of scientific interest due to the grow-
ing number of publicly available music databases. The main research areas
of music analysis are recognition of instruments, genres, artists, and singers
[42, 44, 57, 95, 117, 127, 167, 180, 200]. Music similarity retrieval addresses the
identification of pieces of music that sound similar [9, 64, 75, 94]. A related task
is music identification (or music recognition) where different interpretations or
versions of a single piece of music are matched [34, 130]. Furthermore, research
focuses on emotion detection in music. The goal of emotion detection is to
classify music into categories, such as cheerful and depressive [94].
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A related field is structural music analysis which addresses the extraction of
repeated patters, such as chorus and verse of a piece of music [54, 107]. Addi-
tionally, the analysis of structures such as rhythm and tempo is a popular task
[59, 163]. A related topic is music transcription that deals with the extraction
of notes and key(s) from a piece of music [48, 202]. Music summarization and
thumbnailing address the extraction of the most significant part(s) in a piece of
music [13, 35, 56].

Query-by-humming (QBH) is a very popular MIR application. In a QBH
application a user can search for music in a database by humming the melody
of the piece of music. The matching between the hummed query and the music
database usually employs content-based audio features [141, 156]. Additionally,
content-based music visualization, organization and browsing techniques employ
audio features for the representation of audio signals [17, 139].

We review a variety of audio features that originate from audio fingerprint-
ing. Audio fingerprinting addresses matching of audio signals based on fin-
gerprints [154, 173]. A fingerprint is a compact numeric representation that
captures the most significant information of a signal. A popular application are
information systems that retrieve the artist and title of a particular piece of
music given only a short clip recorded with a mobile phone.

This article covers the most active domains of audio processing and retrieval.
We have systematically reviewed the most important conference proceedings and
journals that are related to audio retrieval and signal processing. The result of
the literature survey is a collection of more than 200 relevant papers that address
audio feature extraction.

6.2 Literature on Audio Features

The literature survey yields a large number of publications that deal with feature
extraction and audio features. We organize the publications according to the
addressed audio features in order to make them manageable for the reader.
Tables 8 and 9 list relevant publications for each audio feature in alphabetical
order and help the reader to get an overview of the literature in the context of
an audio feature.

We have tried to identify the base paper for each feature. This is not always
possible, since some features do not seem to have a distinct base paper, as in the
case of zero crossing rate and short-time energy. In cases where no base paper
exists, we have tried to identify an early paper, where the feature is mentioned.
Base papers and early papers are printed in boldface.

6.3 Relevant Published Surveys

Audio feature extraction and audio retrieval both have a long tradition. Con-
sequently several surveys have been published that cover these topics. Most
related surveys focus on a single application domain, such as MIR or finger-
printing and cover a relatively small number of features. In the following, we
briefly present important surveys in the field of audio feature extraction.
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Audio Feature Selected References
4 Hz Modulation Energy [162], [31, 104]
4 Hz Modulation Harmonic Coef. [31]
Adapt. Time-Frequency Transform [185]
Amplitude Descriptor [123]
Auditory filterbank temp. envelopes [114]
Autocorrel. MFCCs [164]
Band Periodicity [106], [109]
Bandwidth [4, 22, 32, 109, 114, 127, 154, 167, 194]
Bark-scale Frequency Cepstral Coef. [51, 127]
Beat Histogram [183], [56, 57, 98, 99, 116]
Beat Spectrum (Beat Spectrogram) [49, 50], [26, 116]
Beat Tracker [160],[161]
Chroma CENS Features [130]
Chromagram [12], [13, 54, 75, 128]
Cyclic Beat Spectrum [89]
Daubechies Wavelet Coef. Histogr. [98], [94, 95, 97]
Distortion Discriminant Analysis [19], [20]
DWPT-based rhythm feature [56], [57]
(Multi-resolution) Entropy [15, 122, 154, 167]
(Modified) Group Delay [198], [6, 61, 132, 134, 163]
Harmonic Coefficient [31], [200]
Harm. Concentration [167]
Harmonic Derivate [167]
Harm. Energy Entropy [167]
Harmonic Prominence [22]
Inharmonicity [3], [4, 142]
Integral Loudness [144], [147]
Line Spectral Frequencies [41, 76, 88, 106, 108]
Linear Prediction Cepstral Coef. [8], [76, 81, 88, 93, 110, 131, 195]
Linear Prediction ZCR [41]
Linear Predictive Coding [78, 79, 102, 123, 152]
Mel-scale Frequency Cepstral Coef. [18], [11, 27, 30, 37, 97, 127, 153, 191]
Modulation Frequency Features [172], [39, 85, 138, 173]
MPEG-7 Audio Fundamental Freq. [73], [83]
MPEG-7 Audio Harmonicity [73], [83]
MPEG-7 Audio Power [73], [83]
MPEG-7 Audio Spectrum Basis [73], [82, 83]
MPEG-7 Audio Spectrum Centroid [73], [83]
MPEG-7 Audio Spectrum Spread [73], [83, 142, 150]

Table 8: This table contains selected references for each audio feature. Base
papers and early papers are typeset in bold font.
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Audio Feature Selected References
MPEG-7 Audio Waveform [73], [83]
MPEG-7 Harmonic Spec. Cen-
troid/Deviation/Spread/Variation

[73], [83, 143]

MPEG-7 Log Attack Time [73], [83, 142]
MPEG-7 Spectral Centroid [73], [83]
MPEG-7 Temporal Centroid [73], [83, 142]
Noise-Robust Auditory Feature [156]
Perceptual Linear Prediction (PLP) [62], [55, 81, 93, 110, 122]
Phase Space Features [87, 100, 148, 149]
Pitch [4, 25, 27, 33, 104, 180, 194]
Pitch Histogram [179], [98, 99, 180, 182]
Pitch Profile [202]
Pitch Synchronous ZCPA [52], [53]
Psychoacoustic Pitch [115]
Pulse Metric [162]
Rate-scale-frequency Features [156]
Relative Spectral PLP [63]
Rhythm Patterns [139], [155]
Sharpness [204], [64, 142]
Short-Time Energy (STE) [22, 25, 76, 32, 90, 109, 163, 168, 195]
Sone [139], [127, 155]
Spectral Center [64, 114, 163]
Spectral Centroid [4, 22, 109, 114, 127, 154, 162, 180, 194]
Spectral Crest [5, 10, 64, 90, 127, 142, 154, 185]
Spectral Dispersion [163]
Spectral Flatness [74], [5, 64, 69, 90, 142, 154]
Spectral Flux [68, 76, 78, 79, 95, 162, 181, 200]
Spectral Peaks [186], [187]
Spectral Peak Struct. [167]
Spectral Rolloff [76, 97, 114, 142, 150, 162, 167, 181]
Spectral Slope [127, 142]
Subband Energy Ratio [22, 32, 76, 102, 109, 114, 127, 154]
Subband Spectral Flux [22]
Volume [10], [76, 102, 104, 114, 127, 140]
Zero Crossing Peak Amplitudes
(ZCPA)

[80], [51, 81]

Zero Crossing Rate (ZCR) [4, 22, 27, 41, 76, 79, 127, 140, 162, 168]

Table 9: This table contains selected references for each audio feature. Base
papers and early papers are typeset in bold font.
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Lu et al. provide a survey on audio indexing and retrieval techniques in [105].
The survey describes a set of traditional time- and frequency domain features,
such as harmonicity and pitch. The authors focus on feature extraction and
classification techniques in the domains of speech and music. Furthermore, the
survey discusses concepts of speech and music retrieval systems.

In [192] the authors present a comprehensive survey of features for multime-
dia retrieval. The survey covers basic short-time audio features, such as volume,
bandwidth, and pitch together with aggregations of short-time features. The
authors extract audio features together with video features from a set of TV
programs and compute the correlation between the features in order to show
redundancies.

A bibliographical study of content-based audio retrieval is presented in [38].
The survey covers a set of seven frequently used audio features in detail. The
authors perform retrieval experiments in order to prove the discriminant power
of the features.

Tzanetakis surveys a large set of music-related features in [179]. The author
describes techniques for music analysis and retrieval, such as features for beat
tracking, rhythm analysis, and pitch content description. Additionally, the au-
thor surveys traditional features that mainly originate from ASR. Finally, the
survey presents a set of features that are directly computed from compressed
MPEG signals.

Compressed-domain features are also presented in [188]. The authors dis-
cuss features for audio-visual indexing and analysis. The survey analyzes the
applicability of traditional audio features and MPEG-7 descriptors in the com-
pressed domain. However, the major part of the paper addresses content-based
video features.

A survey of audio fingerprinting techniques is presented in [23]. Fingerprints
are compact signatures of audio content. The authors review the most important
recent feature extraction techniques for fingerprinting.

Peeters summarizes a large set of audio features in [142]. The author orga-
nizes the features among others in global and frame-based descriptions, spectral
features, energy features, harmonic features, and perceptual features. The fea-
ture groups in [142] are similar to the groups of the taxonomy we present in
Section 4.

There has been extensive research done in the field of audio feature extrac-
tion in recent years. However, we observe that most surveys focus on a small
set of widely used traditional features while recent audio features are rarely ad-
dressed. In contrast to existing surveys we solely focus on feature extraction
which allows us to cover a richer set of features and to introduce some structure
in the field. Additionally, the survey presented in this paper covers a wide range
of application domains. The advantage of this approach is that it brings features
from different domains together, which facilitates the comparison of techniques
with different origins.
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7 Summary and Conclusions

This paper presents a survey on state-of-the-art and traditional content-based
audio features originating from numerous application domains. We select a set
of 77 features and systematically analyze their formal and structural properties
in order to identify organizing principles that enable a categorization into mean-
ingful groups. This leads to a novel taxonomy for audio features that assists the
user in selecting adequate ones for a particular task. The taxonomy represents
a novel perspective on audio features that associates techniques from different
domains into one single structure.

The collection of features in this paper gives an overview of existing tech-
niques and may serve as reference for the reader to identify adequate features
for her task. Furthermore, it may be the basis for the development of novel
features and the improvement of existing techniques.

Additionally, we conclude that most of the surveyed publications perform
retrieval tasks on their own audio databases and ground truths. Hence, the re-
sults are not comparable. We stress that the entire field of audio retrieval needs
standardized benchmarking databases and ground truths specified by domain
experts who have an unbiased view on the field. Although attempts of stan-
dardized benchmarking databases in the domains of speech and music retrieval
have been made more work has to be directed towards this task.
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