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1 Introduction

In this report, we review the set of audio descriptors which has been developed and used in the framework of
the CUIDADO L.S.T. project at Ircam.

1.1 Features taxonomy

Many different types of signal features have been proposed for the task of sound description coming from the
speech recognition community, previous studies on musical instrument sounds classification (Foote 1997,
Scheirer and Slaney 1997; Brown 1998; Martin and Kim 1998; Serra and Bonada 1998; Brown 1999; Wold,
Blum et al. 1999; Jensen 2001) (Peeters and Rodet 2002; Peeters 2003; Peeters and Rodet 2003) and results
of psycho-acoustical studies (Krimphoff, McAdams et al. 1994; Misdariis, Smith et al. 1998; Peeters,
McAdams et al. 2000).

A systematic taxonomy of features is outside the scope of this paper; nevertheless we could distinguish

features at least according to four points of view:

1. The steadiness or dynamicity of the feature, i.c., the fact that the features represent a value extracted
from the signal at a given time, or a parameter from a model of the signal behavior along time (mean,
standard deviation, derivative or Markov model of a parameter);

2. The time extent of the description provided by the features: some description applies to only part of the
object (e.g., description of the attack of the sound) whereas other apply to the whole signal (e.g.,
loudness of a note);

We can thus distinguish between the time Fundamental
extend validity of the description Frequency
*  Global descriptors: descriptors
computed for the whole signal, which I Instantaneous
meaning is for the whole signal. Example Descriptors Descriptors
of this are the attack duration of a sound. Signal | — Extraction —
. . Module
These descriptors requires to have a L Global
previous time localization of the sound Descriptors
events: the signal is either a sound sample
or has been segmented into non- i
overlapping events. Temporal | | [ oo
* Instantaneous descriptors: descriptors Modeling

computed for each time frame (a time
frame is a short time segment of the signal
which duration is around 60msec length). Segmentation
Example of this are the spectral centroid
of a signal which can varies along time.

A temporal modeling module then
process the time vectors of instantaneous
descriptors in order to give the final
descriptors.

Figure 1 Global and instantaneous descriptor
extraction flowchart
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The “abstractness” of the feature, i.e., what the feature represents (e.g., cepstrum and linear prediction
are two different representation and extraction techniques for representing spectral envelope, but
probably the former one can be considered as more abstract than the latter);

The extraction process of the feature. According to this point of view, we could further distinguish:

* Features that are directly computed on the waveform data as, for example, zero-crossing rate (the
rate that the waveform changes from positive to negative values);
* Features that are extracted after performing a transform of the signal (FFT, wavelet . . .) as, for
example, spectral centroid (the “gravity center” of the spectrum);
* Features that relate to a signal model, as for example the sinusoidal model or the source/filter model;
* Features that try to mimic the output of the ear system (bark or erb bank filter output).

In the CUIDADO project, a large set of features has been implemented, including features related to the

Temporal shape: features (global Sinusoidal Perceptual
or instantaneous) computed from Signal Signal frame > FFT Harmonic Model
the waveform or the signal energy
(envelop). Example: attack-time,
temporal increase/decrease, Instantaneous | | Instantaneous | | Instantaneous | | Instantaneous
effective duration. Temporal Spectral Harmonic Perceptual
i Descriptors Descriptors Descriptors Descriptors
Temporal feature: auto- ‘ ‘ ‘
correlation  coefficients,  zero- )
crossing rate, Energy Envelop Temporal
modeling
Energy features: features
(instantaneous) referring to various l l
energy content of the signal. Global Global
. . Temporal Temporal
Example: global energy, harmonic Descriptors Descriptors

energy, noise energy,

* Spectral shape features: features
(instantaneous) computed from the
Short Time Fourier Transform
(STFT) of the signal. Example:
centroid, spread, skewness,
kurtosis, slope, roll-off frequency,
variation), Mel-Frequency Cepstral
Coefficients (plus Delta and
DeltaDelta coefficients)

Figure 2 Details of temporal, energy, spectral, harmonic and
perceptual descriptors extraction proces

* Harmonic features: features (instantaneous) computed from the Sinusoidal Harmonic modeling of the
signal. Example: harmonic/noise ratio, odd to even and tristimulus harmonic energy ratio, harmonic
deviation,

* Perceptual features: features (instantaneous) computed using a model of the human earring process.
Example: relative specific loudness, sharpness, spread,

* MPEG-7 Low Level Audio Descriptors (spectral flatness and crest factors (MPEG-7 2002)).

1.2 Organization of the paper

In part 2, we indicate the various pre-processing stages needed for the extraction of the descriptors.
Inpart3,4,5, 6,7, 8 and 9, we present by family the various global and instantaneous descriptors.

In part 10, we present the temporal models applied to the instantaneous descriptors which have been used.
In part 11, we sum up in a table the whole list of extracted descriptors and their corresponding xml tag used
in the CUIDADO project.
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2 Pre-computing

The pre-computing stage of the extraction module provides the adequate signal representations for latter

processing of descriptors extraction. It concerns

* the estimation of the energy envelop of the signal,

¢ the Short Time Fourier Transform (STFT)
* the sinusoidal harmonic modeling of the signal,

* acascade of processing trying to mimic human earring process.

2.1 Energy envelop

Description: the energy envelop is used for the
calculation of the global temporal descriptors: log-
attack time, temporal centroid, It can be
computed in several way: low-pass filtering of the
analytical signal amplitude, ... Although a simple
and efficient implementation relies on the
computing of the instantaneous rms (root mean
square) values of the local signal. The window
size (L=100msec) has been chosen in order to
apply an equivalent low-pass filter with a cut-off
frequency of 5 Hz.

2.2 Short-Time Fourier Transform

A frame-by-frame analysis is performed using a
window size of 60 msec and a hop size of 20
msec. This is the double of what is defined in the
mpeg-7 scalable series (30 msec and 10 msec).
This doubling allows a correct description of
harmonic sounds with pitch down to 50 Hz (3
periods of 50 Hz = 60 msec).

The Short-Time Fourier Transform for a given
time frame is obtained from the FFT of the
corresponding signal frame.

2.3 Sinusoidal Harmonic modeling

At each time frame, the peaks of the STFT of the
windowed signal segment are estimated. Peaks
close to multiples of the fundamental frequency at
this frame are then choose in order to estimate the
sinusoidal harmonic frequency and amplitude
(Depalle, Garcia et al. 1993).

23/04/04
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2.4 Perceptual model

Before computing the perceptual descriptors,
several process are applied to the spectrum:

Signal ~ Signal frame FFT

5

. . 0
*  mid-ear filtering, freq_v/amplv}  perceptual
. . . Model

* logarithmic band conversion (Mel or Bark :
bandS). z/ampl¢band_v
Instantaneous
Perceptual
Descriptors

2.4.1 Mid-ear filtering

In order to simulate the attenuation due to the
human middle ear, we applied a filter to the STFT T\,
of each signal frame (Moore, Glasberg et al.
1997). The filter frequency response is
represented in Figure 3.

o
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Amplitude [db20]
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Freauencv [H71

Figure 3 Mid-ear attenuation filter frequency

response

2.4.2 Mel scale
Description: Human Auditory system behavior Number of mel bands: 24
can be modeled by a set of critical band filter. The Tl ﬁ A A “ g‘\\ [\ /\ /\
Mel bands are one of these. It is based on the Mel ' h \“ ﬁ“ H ” I (f\ f\ / \ / \
frequency scale, which is linear at low frequencies B i l‘ Jl‘ / \\
(below 1000 Hz) and logarithmic at high ol ‘; ‘i IH H‘ “ }/ \ / \ / \ / \
frequencies (above 1000 Hz). The Mel scale is s IR ’ \3 0| / \/ / \
specially popular in the Automatic Speech W\ ‘M [ \‘ E / \ / V \f \
Recognition community where it is used for the 1 " I ‘/ « ] f {\ /\ \
calculation of the Mel Frequency Cepstral 08 ‘\f i[ \ 1 / ( /\ \ ;"\
Coefficient (MFCC) (Rabiner and Juang 1993). o.e’m it ‘i e il
Conversion from Hz scale to Mel scale oafl ““ \} H M ‘{ \\/ J \ / \ \
* for f<1000Hz, M = f ol (NN ATRY YR

) A

° fOI‘PlOOOHZ, M = fC ° {1 + loglo(é]] 0° ! Frequency [Hz] ' 2

Where M is the frequency expressed in Mel, fin Figure 4 Mel bands

Hz, and fc=1000Hz.
This is represented in Figure 4.
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Calculation of the critical band energy
The linear frequency axe is first converted into Mel scale. The Mel scale axe is then divided into 20 equally
spaced bands. After weighting by the Mel band window (we’ve chosen triangle shape windows), the energy
of the bins k of the FFT corresponding to each Mel band z (begin(z)<k<end(z)) are then summed up to form
the contribution to the band z.
end(z)

amplband v(z) = z A

k=begin(z)
where A, is the amplitude of the bin & of the FFT

2.4.3 Bark scale

Description: Although we used the Mel bands for

the MFCC calculation (because of its popularity Number of bk bands: 24
in the ASR community), the Bark bands (Zwicker "M
and Terhardt 1980) can model a better oe
approximation of the Human Auditory system. 08
This latter will be used for the calculation of the 07
Loudness, Specific Loudness, Sharpness and ol
Spread. s ‘
Conversion from Hz scale to Bark scale o4
03
B=13-atan( A J+3.5-atan( / J o m
1315.8 7518
Where B is the frequency expressed in Bark, and f o mm
in Hz. % 05 1 15 2

Frequency [Hz]

Figure 5 Bark bands

Calculation of the critical band energy
The linear frequency axe is converted into Bark scale. The Bark scale axe is then divided into 24 equally
spaced bands. The energy of the bins k£ of the FFT corresponding to each Bark band z are then summed up to
form the contribution to the band z.
end(z)

amplband v(z) = Z A

k=begin(z)
where A4, is the amplitude of the bin & of the FFT
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2.5 Amplitude and Frequency scale

2.5.1 Amplitude scales

When features are extracted from the
signal spectrum, from the harmonic peaks 04

0.1
or from filter-banks, various amplitude
scales are considered: linear amplitude, = =
amplitude converted to an energy scale £005 E£005
and amplitude converted to a log-
amplitude scale: | I
. . . 0 L 0 :
* Linear Amplitude: amplitude 0 , 2000 4000 6000 10 . 5 0 5
. Energy: amplitu de™2 . x10 Freq . x 10 Log-freq
* Log-amplitude: log-amplitude 6 .
9] 9]
§ 4 § 4
2.5.2 Frequency scales 2 2
When features are extracted from the 0 ' 0 ‘
signal spectrum, from the harmonic peaks 0 2000F s 4000 6000 10 '5L og-freq 0 °
or from filter-banks, various frequency 200 200
scales are considered: linear frequency 150 b 150 !
Qo Qo
and frequency converted to a log: 2 ool g LB o
frequency scale centered on 1000 Hz. g AR L) ‘”WWY g o
* Linear frequency 2 2
* Log-frequency: Defined with 0 0
6 £1000 H 0 2000 4000 6000 -10 5 0 5
respect to a frequency o z Freq Lo

logfreq = log2(freq /1000);

Figure 6 Spectrum in
[top-left] lin-frequency/lin-amplitude,
[middle-left] lin-frequency/energy,
[bottom-left] lin-frequency/log-amplitude,
[top-right] log-frequency/lin-amplitude,
[middle-right] log-frequency/energy,
[bottom-right] ] log-frequency/log-amplitude

2.6 Descriptors on Spectrum / Harmonic peaks / Bark bands

Most of the spectral shape descriptors (detailed in part 6.1, namely the centroid, spread, skewness, kurtosis,
slope, decrease, roll-off and variation) are also computed on the harmonic peaks and on a Bark band
representation.

Some harmonic descriptors (detailed in part 7, namely the deviation, odd to even energy ratio and
tristimulus) are also computed on a Bark band representation.

23/04/04 6/25
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3 Global temporal features
3.1 Envelop characterization
3.1.1 Attack / Decay / Sustain / Release envelop modeling

As it is the case in most synthesizers, it is usual to 4
represent the evolution along time of the energy of
a sound sample using an attack, decay, sustain,
release (ADSR) envelop (see

Figure 7). However, this representation is hardly
achievable for most real sounds, since a) the A A
decay part is often not clearly present, b), the |
sustain part is not present if the sound is not \
sustained (guitar sounds), c¢) the release part is not AN
present if the sound has been truncated which is S
the case with some “sampler” sounds.

attack decay sustain release

Figure 7 Envelop modeling: ADSR envelop, with a
modulation on the sustain part and an exponential

release
For this reason, in the following we will deal with 4
a simpler representation: the attack/rest envelop; ~ sustained sound
in this representation the decay part is not P S A e

estimated and the sustain and release parts are
merged. If the sound is a sustained sounds the rest
will represent the sustain, if the sound is not
sustained the rest will represent the release (see
Figure 8).

non-sustained sound

v

attack rest

Figure 8 Envelop modeling: AR envelop, with a
modulation on the sustain part and an exponential
release
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3.1.2 Attack part

The attack of the sound is described using two parameters:

* The duration of the attack

* The average slope of the energy of the attack: the increase factor

For both parameters, we need to estimate when does the attack actually starts and end which is not an easy

task considering that the attack is a fuzzy concept.

3.1.2.1 Estimation of the start and end of the attack

Fixed threshold method: In this method, the start
and end of the attack are estimated by applying
thresholds on the energy envelop of the signal. In
order to take into account the possible presence of
noise in the signal the “start-attack™ threshold is
usually set to 20% (in the following all threshold
values are expressed as percentage of the
maximum value of the energy of the sound along
time). In order to take into account the possibility
that the maximum of the envelop does not occur
at the end of the attack but possibly latter in the
signal (as in a trumpet sound), the “end-attack”
threshold is set to 90%. However these threshold
are to be set empirically for each sound set.

Adaptative threshold method (weakest effort
method): In this method, the value of the “start-
attack” and “end-attack” thresholds are not fixed
but estimated according to the behavior of the
signal during the attack. For a specific threshold
value th;, the time the energy envelop reaches for
the first time this threshold is estimated, we not it
t;. For successive values of the threshold th;, we
define an effort as the time the signal goes from
one threshold value to the next threshold value:
w~ti+1-t;, The average effort value, w, is then
computed.

We then determine the best threshold for the
starting of the attack th,; as the first threshold for
which the effort w; goes below M*w. In a similar
way, we determine the best threshold for the
ending of the attack tA,,4, as the first threshold for
which the effort w; goes above M*w. We’ve used
a value of M=3.

Finally, the exact start time #; and end time #,,4 of
the attack are refined around the time
corresponding to thy and th.,; by taking the local
minimum and local maximum respectively.

23/04/04
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3.1.2.2 Log-Attack Time (mpeg7 : LogAttackTime) DT.g_lat

Description: The log-attack time is the logarithm (decimal base) of the time duration between the time the
signal starts to the time it reaches its stable part. It has been proved to be one of the most perceptually
important descriptors. It can be estimated taking the logarithm of the time from the start to the end of the
attack.

Formulation:

lat = log,, (stop_attack — start_attack)

3.1.2.3 Temporal increase (cuidado:Temporalincrease) DT.g_incr
Description: The increase time is defined as the average temporal slope of the energy during the attack time.

Formulation: We compute the local slopes of the energy corresponding to each effort w;. We compute the
weighted average of the slopes. The weights are chosen in order to emphasizes slope values in the middle of
the attack (weights = values of a gaussian function centered around threshold=50% and of std=0.5).

3.1.3 Sustain part

The sustain of the sound is described using two parameters:
* The decrease slope
*  The modulation of the energy and the modulation of fundamental frequency

3.1.3.1 Decrease part: Temporal decrease (cuidado:Temporalpecrease) DT.g_decr

Description: The temporal decrease is a measure of the amount of decrease of the signal energy. It allows
distinguishing non-sustained (percussive, pizzicato, ...) sounds from sustained sounds. Its calculation is
based on the following envelop temporal model starting from the maximum of the energy envelop (fa):

S()=A-exp(-a(t-t,,)) t>t,,
« is estimated by linear regression on the logarithm of the energy envelope of the signal.

3.1.3.2 Sustain part: Energy Modulation and Fundamental frequency modulation

(mpeg7 :AudioPower ScalableSeriesType element name="Modulation")
(mpeg7 :AudioFUndamentalFrequency ScalableSeriesType element name="Modulation")

Description: During the sustained part of a note played on natural musical instruments, tremolo and vibrato
are often used for expressiveness. The energy modulation and fundamental frequency modulation computed
on the energy and fundamental frequency signal during the sustained part of the sound aims at describing
those. Each modulation is represented by a frequency and amplitude factor.

Formulation:

The modulation is estimated only during the sustained part of a sound using a peak detection algorithm in the
amplitude spectrum of the instantaneous descriptor.

1. Locate the sustained part of the sound

2. Correct the energy envelope (fundamental frequency) by subtracting its logarithmic (linear) tendency
during the sustained part

Compute the amplitude spectrum of the corrected envelope

4. Locate the maximum peak within the range [1 Hz, 10 Hz].

(98]
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3.1.4 Example

In Figure 9 and Figure 10, we illustrate
the computation of the attack parameters
and sustain/decrease parameters.

On the top of Figure 9 we illustrate the
energy envelop of an alto sound along
the various time corresponding to the
threshold 10% to 100% (vertical green
lines). On the middle of Figure 9 we
represents the efforts (y-axis)
corresponding to the various thresholds
(x-axis), the mean value of the efforts
(continuous horizontal line) and the
M*mean value of the effort (dotted
horizontal line). On the bottom of Figure
9 we illustrate the detected start of the
attack (vertical green line), end of the
attack (vertical red line), start of the
sustained part (vertical black line) and
approximation of the increase and
decrease (red lines).

On the top of Figure 10, we illustrate the
sustain parts on the same sounds (start
by green line, end by red line). On the
middle of Figure 10, we represent only
the sustained part, the decrease
approximation (red line) and the
estimated modulation (dotted red line).
On the bottom of Figure 10, we
represents the amplitude spectrum of the
corrected temporal energy during the
sustained part.
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F:\data\class\solsustbowedstring\alto\mf\alto\_a\_gref\_mf\_si3\_12.wav
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Figure 9 Log-Attack Time and Temporal Increase /

Decrease estimation

[Top] Energy Envelop with percent thresholds (vertical lines)
[Middle] Efforts corresponding to the percent thresholds
[Bottom] Resulting attack, increase and decrease segments
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Figure 10 Energy modulation estimation

[Top] Energy Envelop

[Middle] Energy Envelop of the sustained part corrected by

linear regression

[Bottom] Amplitude spectrum of the corrected energy envelop
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3.2 Others

3.2.1 Temporal centroid (mpeg7 : Temporalcentroid) DT.g_tc

Description: The temporal centroid is the time averaged over the energy envelop. It allows distinguishing
percussive from sustained sounds. It has been proved to be one perceptually important descriptors.

Formulation:

D e(t)t

t

tc=——e—

D elt)

t

3.2.2 Effective Duration (cuidado:TemporalEffectiveDuration) DT.g_ed

Description: The effective duration is a measure
of the time the signal is perceptually meaningful.
It allows distinguishing percussive sounds from
sustained sounds but depends on the recording
length. It is approximated by the time the energy
envelop is above a given threshold. A threshold of
40% was used.

energy

threshold

v

»
|

effective duration

time

4 Instantaneous temporal features
4.1 Auto-correlation (cuidado:audiozcr) DT.i_xcorr_m

Description: The cross-correlation represents the
signal spectral distribution but in the time domain
(the cross-correlation of a signal is the inverse [=_signal] [ [ scor]
Fourier Transform of the spectrum energy ' ‘
distribution of the signal). It has been proved to
provide a good description for classification

2
N

Amplitude
S o
S o o

Amplitude

o

o o

S
N
S
3

(Brown 1998). In order to obtain cross-correlation o a0 [ 20 0 R
coefficients independent from the sampling rate of 250
the signal, the signal is first down-sampled at 200} 1
11025 Hz. From the cross-correlation, we only g 150 A)H\% \W\N\w ﬁLJﬂ\ T
keep the first 12 coefficients. £ 100 ¥y P At P

P . LT A Y
Formulation: % 1000 2000 3000 4000 5000 6000

o2 0 12 Frequency
N—k-1
xcorr(k) = 5 Zx(n) x(n+k) Figure 11 [top-left] signal [top-right] cross-
x(0)" 3% correlation function

[bottom] signal amplitude spectrum and spectrum
envelop estimated by cross-correlation (dashed line)

23/04/04 11/25



G. Peeters A Large Set of Audio Features for Sound Description 2004

4.2 Zero-crossing rate (cuidado:audioxcorr) DT.i_zcr v

Description: The zero-crossing rate is a measure ; zerocrossin e 492959
of the number of time the signal value cross the L]
zero axe. Periodic sounds tend to have a small il {\ N
value of it, while noisy sounds tend to have a high ol {
1l
[

value of it. It is computed at each time frame on
the signal. ;

015 ‘
250 300 350 400 450 500

Figure 12 Zero-crossing rate (=432) during
voiced speech region

Zero-crossin i rate: 71504525

Figure 13 Zero-crossing rate (=7150) during
unvoiced speech region

5 Energy features

5.1 Total Energy (mpeg7 :AudioPower) DE.i _tot v

Description: The total energy estimates the signal power at a given time. It is estimated directly form the
signal frame around a given time.

5.2 Harmonic Part Energy (cuidado:AudioHarmonicPower) DE.i_harmo_v

Description: The harmonic energy estimates the power of the harmonic part of the signal at a given time. It
is estimated from the estimated harmonic amplitude at a given time.

5.3 Noise Part Energy (cuidado:AudioNoisePower) DE.i_noise_v

Description: The noise energy estimates the power of the noise (non-harmonic) part of the signal at a given
time. It is estimated from the signal obtained by subtracting the harmonic part from the signal.

23/04/04 12/25
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6 Spectral features
6.1 Spectral shape description

6.1.1 Spectral centroid (mpeg7:AudioSpectrumCentroid) DS.i_sc_v

The spectral centroid is the barycenter of the spectrum. It is computed considering the spectrum as a
distribution which values are the frequencies and the probabilities to observe these are the normalized
amplitude.

M=IX'p(x) Ox

where
* x are the observed data: x = freq v(x)

ampl _v(x)
Z ampl _v(x)

*  p(x) is the probability to observe x: p(x) =

6.1.2 Spectral spread (mpeg7:AudioSpectrumSpread) DS.i_ss_v

Following the previous definition, we define the spectral spread as the spread of the spectrum around its
mean value, i.e. the variance of the above defined distribution

o' == plx) &

6.1.3 Spectral skewness (cuidado:AudioSpectrumSkewness) DS.i_skew_v

The skewness gives a measure of the asymmetry
of a distribution around its mean value. It is
computed from the 3™ order moment: - AR

my= [ (=)' p(x) ox : s

) m
The skewness is then: y, = —g
[0

The skewness SK describes the degree of skewness=0
asymmetry of the distribution. AR
* SK =0 indicates a symmetric distribution,
¢ SK <0 indicates more energy on the right,
¢ SK >0 indicates more energy on the left.

The following figures represent various values of
the spectral skewness depending on the spectral I
shape (x=frequency, y=amplitude): skewness<0
¢ data (blue line),
* gaussian pdf fitting to the data (red line)

skewness>0
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6.1.4 Spectral kurtosis (cuidado:AudioSpectrumKurtosis) DS.i_kurto_v

The kurtosis gives a measure of the flatness of a
distribution around its mean value. It is computed
from the 4™ order moment:

m, = [(x- ) p(x) a

. m
The kurtosis is then: y, = —:
O

The kurtosis K indicates the peakedness/flatness
of the distribution.

¢ K =3 for a normal distribution,

e K <3 for a flatter distribution,

e K> 3 for a peaker distribution.

The following figures represent various values of
the spectral kurtosis depending on spectral shape
(x=frequency, y=amplitude):

e data (blue line),

* gaussian pdf fitting to the data (red line)

Kurtosis=1.8

A/ '

Kurtosis=6

6.1.5 Spectral slope (cuidado:AudioSpectrumSlope) DS.i_sIope_v

Description: The spectral slope represents the
amount of decreasing of the spectral amplitude. It
is computed by linear regression of the spectral
amplitude.

Formulation:
a(f) = slope- f + const
where

NY flo)*ak)-" f(k)* D a(k)

slope = 5
k
2.4 sz%k)—(zf(k)]

23/04/04
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6.1.6 Spectral decrease (cuidado:AudioSpectrumDecrease) DS.i_decr_v

Description: The spectral decrease also
represents the amount of decreasing of the
spectral amplitude. This formulation comes from
perceptual studies, it is supposed to be more
correlated to human perception.

Formulation:

decrease = ! z a(k)-a(l)

Za k=2:K k-1

k=2:K

6.1.7 Spectral roll-off (cuidado:AudioSpectrumRol10ff) DS.i_rolloff_v

Description: The spectral roll-off point is the . thveshold: 0.95%
frequency so that 95% of the signal energy is N Al ‘
contained below this frequency. It is correlated T }/\ N

somehow to the harmonic/noise cutting frequency. 33 )

Bl
Formulation: 1?\ AN U l»ﬁ/\} y vKw/\\A

AL i 1
0 1000 2000 3000 4000 5000 6000
Frequency [Hz]

sr/2

fe
> a’(f)=0.95> a*(f) * i

where f; is the spectral roll-off frequency, s#/2 is
the Nyquist frequency.

cumulative energy

i i i I i
0 1000 2000 3000 4000 5000 6000
Frequency [Hz]

Figure 14 [Top] Energy spectrum along
frequency with 95% spectral roll-off frequency
(vertical red line) [bottom] cumulative energy along
frequency with 95% spectral roll-off frequency
(vertical red line)

6.2 Temporal variation of spectrum

6.2.1 Temporal variation of spectrum: spectral variation (cuidado:AudioSpectrumvariation)
DS.i_var_v

Description: The spectral variation (also called sometimes in literature spectral flux) represents the amount
of variation of the spectrum along time. It is computed from the normalized cross-correlation between two
successive amplitude spectra a(z-1) and a(t).

Formulation:
> a(t-1,k)-a(t,k)
\/Za(t _1,k)> \/Za(t,k)z

It is close to 0 if the successive spectrum are similar, to 1 of the successive spectrum are highly dissimilar.

variation = 1 —
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6.3 Global spectral shape description

6.3.1 Mel Frequency Cepstral Coefficients (MFCC) (cuidado:audiomrcc) DP.i_ MFCC_m

Description: The MFCC represent represents the
shape of the spectrum with very few coefficients.
The cepstrum, is the Fourier Transform (or
Discrete Cosine Transform DCT) of the logarithm
of the spectrum. The Mel-cepstrum is the
cepstrum computed on the Mel-bands instead of i

the Fourier spectrum. The use of mel scale allows 0 0 ey 0 0w

'
o

T

| spectrum
,,,,,,,,,,, mid-ear spectrum |.

o

o

! A1} A

Log-amplitude

n
o

better to take better into account the mid- . ! | —

. . I el band spectrum
frequencies part of the signal. The MFCC are the 2 —— MFCC spectrum | 1
coefficients of the Mel cepstrum. The first £ \ E—
coefficient being proportional to the energy is not g2
stored, the next 12 coefficients are stored for each 3

0 5 10 15 20 25
frame. s Mel band '
—— MFCC
Formulation: g O R L S
= 5
s(n) » FFT » MelBand <
2 4 6 8 10 12
MFC coefficient

Figure 15 [Top] signal spectrum and mid-ear

MFCC 1« DCT |« Log filtered spectrum (dashed line) [middle] Mel band

spectrum and MFCC spectrum (dotted line)
[bottom] MFCC coefficients

Delta-MFCC, Delta-Delta-MFCC:
The Delta-MFCC and Delta-Delta MFCC are the first and second order derivative of the MFCC along time

DMFCC - %MFCC(t)

2
DDMFCC = %MFCC(t)

7 Harmonic features

7.1.1 Fundamental frequency (mpeg7 :AudioFundamentalFrequency) DH.i_fO_v

For an harmonic signal, the fundamental frequency is the frequency so that its integer multiple best explain
the content of the signal spectrum. The fundamental frequency has been computed using the maximum
likelihood algorithm. (Doval 1994) (Doval and Rodet 1993).

7.1.2 Noisiness (mpeg7 :AudioHarmonicity) DH.i_noisiness_v
The noisiness is the ratio between the energy of the noise (non-harmonic part) to the total energy. It is close
to 1 for purely noise signal and 0 for purely harmonic signal.

.. ener noise
noisiness = ———————
ener _tot
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7.1.3 Inharmonicity

The inharmonicity represents the divergence of
the signal spectral components from a purely
harmonic signal. It is computed as an energy
weighted divergence of the spectral components
from the multiple of the fundamental frequency.

5 D f(h)y=h* fO[*a’(h)

(cuidado :AudioInharmonicity)

inharmo = — 5
Za (h)
h

This coefficient ranges from 0 (purely harmonic
signal) to 1 (inharmonic signal). The range is [0,1]
since a(h)-h*f0 is at maximum equal to f0.

7.1.4 Harmonic Spectral Deviation

The harmonic spectral deviation is the deviation
of the amplitude harmonic peaks from a global
spectral envelope.

HDEV = %Z(a(h) - SE(h))

h

where H is the total number of considered
harmonics, a(h) the amplitude of the 2” harmonic,
SE(h) the amplitude of the spectral envelope
evaluated at the frequency f(h).

23/04/04

(mpeg7 :
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DH.i_inharmo_v

fo 2f0 3f0 4f0 5f0 6f0 7f0

energy

f(1) (@) f(3) f(4) f(5) 1(6)
frequency

v

Figure 16 Inharmonicity coefficient computation:
harmonic multiple (dotted lines), observed spectral
peaks (contiuous lines)

HarmonicSpectra lDeviation) DH. i_devs_v

Spectral deviation: 0.15374
0.18 T

"""""" spectral envelop
harmonics

0.16

0.14

0.12

o

Amplitude

2
o
@

2
o
>

2
o
=

2
o
>

0 2 4 6 8 10
Frequency [harm number]

o
fo

Figure 17 Harmonic of the signal and spectral
envelope for the estimation of the spectral deviation
for a trumpet sound
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7.1.5 Odd to Even Harmonic Energy Ratio (cuidado:HarmonicSpectralOERatio)Z
DH.i_oeratio_v

Description: The odd to even ratio is a measure
allowing to distinguish odd harmonic energy
predominant sounds (such as clarinet sounds),
from equally important harmonic energy sounds
(such as the trumpet). It is computed from the
ratio between the odd harmonic energy to the even
harmonic energy.

Odd/even harmonic energy ratio: 3.2431
0.045 T

——  odd harmonic
rrrrrrrrrrr even harmonic |. |
0.04 —

0.035

o
o
@

o
o
N}
&

Amplitude

o
o
~

. 0.015
Formulation:

2 0.01

2 " (h)

OER = =12H O00S . T o T .

2 i 9 i | P

Za (h) % 5 10 15 20

h=2:2:H Frequency [harmonic number]

Figure 18 Odd and Even harmonics for a clarinet
sounds

7.1.6 Tristimulus (cuidado:HarmonicSpectralTristimulus). DH.i_tri*_v

DescriQtion: 04 tri1: 0.49442 tri2: 0.45368 tri3: 0.0519
The tristimulus values have been introduced in ' — et
[Pollard et al. 1982] as a timbre equivalent to the 035 tisimiiss |
color attributes in the vision. The tristimulus are o i
three different types of energy ratio allowing a
fine description of the first harmonic of the oz
spectrum, which are perceptually more salient. 02
0.15
Formulation:
0.1
a(]) 005
B ?
Za(h) % = R R )
h
T2 = a(2)+a(3) +a(4) Figure 19 First harmonic (black) second, third
Za(h) and fourth harmonic (red), fifth to the end (black)

for the estimation of the tristimulus

D a(h)
T3 — h=5.H
> a(h)
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8 Perceptual features
8.1 Features

8.1.1 Total Loudness and specific loudness (cuidado:audioLoudness): DP.i_loud_v

Description : (Moore, Glasberg et al. 1997)
The specific loudness is the loudness associated to each Bark band. We note N’(z) the loudness in the z"
Bark band. The precise expression of the loudness can be found in (Moore, Glasberg et al. 1997). This
expression was approximated by neglecting terms of the expression acting only in specific cases (very weak
signals) and by expressing it in relative scale (X. Rodet 2001). The specific Loudness can be expressed in a
simple form:

N'(z) = E(z)*®
The total loudness is the sum of individual loudness (Zwicker 1990)

nb _band
N=>""N()

where N’(z) is the specific loudness

8.1.2 Relative Specific Loudness (cuidado:AudioRelativeSpecificLoudness)Z
DP.i_specloudnorm_m

We define a relative specific loudness as the specific loudness normalized by the total loudness:
Nrel(z)=N'(z)/N

The normalized specific loudness is then independent from the total loudness and represents a sort of

equalization curve of the sounds.

8.1.3 Sharpness (cuidado:Audiosharpness) DP.i_sharp_v

The sharpness is the perceptual equivalent to the spectral centroid but computed using the specific loudness

of the Bark bands (Zwicker 1977).
nband

2.2°g(2)'N'(2)
A=0.11--=!

where z is the index of the band and g(z) is a function defined by:
g(z2)=1 if z<I15
2(2) =0.066-exp(0.171z) if z=15

8.1.4 Spread (cuidado:AudioSpread) DP.i_spread_v
The spread measures the distance from the largest specific loudness value to the total loudness.

ET - (N—maxz N‘(z))

N
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9 Various features
9.1 Spectral Flatness/Crest measure (mpeg7 :AudioSpectrumF'latness) DP.sfm_m

The Spectral Flatness is a measure of the S 121e0n-Toay |
noisiness (flat, decorrelation)/ sinusoidality of a
spectrum (or a part of it). It is computed by the ‘
ratio of the geometric mean to the arithmetic mean : ‘
|
|
|

of the energy spectrum value.

1/K il
l_[ba(k)] ol
kEnum _band

SFM(num_band) =( 1 (] S0 1000 1500 200 2500 3000 300 4000 4500 5000

= Ya® o
KkEnZ | SFM=0, Tonality=1

um _ band

Sfm: 0.052994 - Tonality: 0.21263

where a(k) is the amplitude in frequency band
number k. 2

For tonal signals, SFM is close to 0, for noisy
signal it is close to 1. iz

It is compute for several frequency bands. We
used the following four frequency bands: i

) 250 to 500 HZ DEI 500 1000 1500 2000 FS‘EE SAL[IEIEI B;EFJ 4[|Jﬁ[l AE‘DD 5000
* 500 to 1000 Hz

* 1000 to 2000 Hz SFM=0.05, Tonality=0.21

o 2000 tO 4000 HZ 10 sim. 051765 - Tonaky. 0047661

Another descriptors related to the flatness of the a
spectrum is the Spectral Crest Factor. It is
computed by the ratio of the maximum value
within the band to the arithmetic mean of the
energy spectrum value.

SCM(num _ band) = max(al(k E num — band )) L e i o

—  2ak) SFM=0.51, Tonality=0.047

k Enum _ band

Converting SFM to Tonality measure
The SFM can be converted to the so-called “tonality coefficient” by

SFM ,, =10-log,,(SFM)

SFM ,, .
60

Tonality = min(
For tonal signals, Tonality is close to 1, for noisy signal it is close to 0.

Practical computation:

1
The SFMg, can be computed practically using SFM ,, =10 *FZ“(log10 a(k)-log,, u)
3
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10 Temporal modeling

Each descriptors (except the global descriptors) has been extracted using a frame-by-frame analysis. These
instantaneous descriptors can be used for in a real-time context (recognition or description). These
descriptors can also be used in order to create a Hidden Markov Model representing the descriptors behavior
along time. Another possibility is to model the instantaneous descriptors along time by their statistics (mean
values, variance values) during a period of time (a signal segment, an entire sound events, a musical notes).

For a specific time segment, only the part of the signal above a noise threshold is taken into account. The
estimation of the mean, variance and derivative values are weighted by the instantaneous loudness of the
values of the signal.

10.1.1 Mean

Mean value of the features x weighted by the AudioLoudness w

> e Wl frame)x( frame)
D pane W SFamE)

X =

10.1.2 Variance
Variance value of the features x weighted by the AudioLoudness w

Zw( frame)(x( frame) — ;)2
_ Jrame
- z w( frame)

Sframe

10.1.3 Deviation
Derivative value of the features x weighted by the AudioLoudness w
Z w( frame, frame + 1)(x( frame + 1) — x( frame))

frame
Z w( frame, frame + 1)

frame

deriv =

10.1.4 Temporal modeling an mpeg-7 audio scalable series

The temporal models considered here extend the existing data reduction techniques of the
mpeg7::scalableseries. The temporal models are computed using the weight element of the
scalableseries set to the AudioLoudnessType. The resulting temporal models are stored in the
mpeg7:scalableseries with numOfElements=1 using the following element name:

Element Name Mpeg-7

yes
Mean

Yes
Variance

Extension
Derivative

extension
Modulation

The extraction and storage process of the generic temporal models is illustrated in Figure 20.
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AudioPowerType AudioPowerType
element name="Raw" ‘ ﬁ mean }7

ﬁ variance }—
Instantaneous Temporal

Descriptors Modeling 7% derivative }—

ﬁ modulation }—
Segmentation

Figure 20 Temporal modeling of instantaneous descriptors: example for the AudioPowerType descriptors

element name="Mean" ‘

element name="Variance" ‘

element name="Derivative" ‘

T T T

element name="Modulation" ‘
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11 List of all descriptors

A Large Set of Audio Features for Sound Description

2004

frame number of
LLD List based features acronym xml tag
Temporal Features
Global Temporal Features
Log Attack Time n 1 DTg_lat mpeg7:LogAttackTime
Temporal Increase n 1 DTg_incr cuidado:Temporallncrease
Temporal Decrease n 1 DTg_decr cuidado:TemporalDecrease
Temporal Centroid n 1 DTg_tc mpeg7:TemporalCentroid
Effective Duration n 1 DTg_ed cuidado:: TemporalEffectiveDuration
Instantaneous Temporal Features
Signal Auto-correlation function y 12 DTi_xcorr_m cuidado:AudioXcorr
Zero-corssing rate y DTi_zcr cuidado:AudioZcr
Energy Features
Total energy y 1 DEi_tot_v mpeg7:AudioPower
Total energy Modulation (frequency, amplitude) n 2 DTg_mod_fr, DTg_mod_am |ScalableSeriesType element nhame="Modulation"
Total harmonic energy y 1 DEi_harmo_v cuidado:AudioHarmonicPower
Total noise energy y 1 DEi_noise_v cuidado:AudioNoisePower
Spectral Features
Spectral Shape
Spectral centroid y 6 DSi sc_m mpeg7:AudioSpectrumCentroid (mpeg7:SpectralCentroid)
Spectral spread y 6 DSi_ss_m mpeg7:AudioSpectrumSpread
Spectral skewness y 6 Dsi_skew_m cuidado:AudioSpectrumSkewness
Spectral kurtosis y 6 Dsi_kurto_v cuidado:AudioSpectrumKurtosis
Spectral slope y 6 Dsi_slope_v cuidado:AudioSpectrumSlope
Spectral decrease y 1 Dsi_decs_c cuidado:AudioSpectrumDecrease
Spectral rolloff y 1 Dsi_rolloff_v cuidado:AudioSpectrumRollOff
Spectral variation y 3 Dsi_variation_v cuidado:AudioSpectrumVariation
Global spectral shape description
MFCC y 12 DPi_mfcc_m cuidado:AudioMFCC
Delta MFCC y (post) |12 DPi_Dmfcc_m
Delta Delta MFCC y (post) |12 DPi_DDmfcc_m
Harmonic Features
Fundamental frequency y 1 DHi_f0_v mpeg7:AudioFundamentalFrequency
Fundamental fr. Modulation (frequency, amplitude) |n 2 FO Mod AM, FR ScalableSeriesType element name="Modulation"
Noisiness y 1 DHi_noisiness_v mpeg7:AudioHarmonicity
Inharmonicity y 1 DHi_inharmo_v cuidado:Audiolnharmonicity
Harmonic Spectral Deviation y 3 DHi_devs_v mpeg7:HarmonicSpectralDeviation
Odd to Even Harmonic Ratio y 3 Dhi_oeratio_v cuidado:HarmonicSpectralOERatio
Harmonic Tristimulus y 9 Dhi_tri_v cuidado:HarmonicSpectralTristimulus
Harmonic Spectral Shape
HarmonicSpectral centroid y 6 DHi_sc_m mpeg7:HarmonicSpectralCentroid
HarmonicSpectral spread y 6 DHi_ss_m mpeg7:HarmonicSpectralSpread
HarmonicSpectral skewness y 6 DHi_skew_m cuidado:HarmonicSpectralSkewness
HarmonicSpectral kurtosis y 6 DHi_kurto_v cuidado:HarmonicSpectralKurtosis
HarmonicSpectral slope y 6 DHi_slope_v cuidado:HarmonicSpectralSlope
HarmonicSpectral decrease y 1 DHi_decs_c cuidado:HarmonicSpectralDecrease
HarmonicSpectral rolloff y 1 DHi_rolloff v cuidado:HarmonicSpectralRollOff
HarmonicSpectral variation y 3 DHi_variation_v mpeg7:HarmonicSpectralVariation
Perceptual Features
Loudness y 1 DPi_loud v AudioLoudness
RelaitveSpecific Loudness y 24 DPi_specloud_m cuidado:AudioRelativeSpecificLoudness
Sharpness y 1 DPi_sharp_v cuidado:AudioSharpness
Spread y 1 DPi_spread_v cuidado:AudioSpread
Perceptual Spectral Envelope Shape
Perceptual Spectral centroid y 6 DPi_sc_m cuidado:AudioFilterbankCentroid
Perceptual Spectral spread y 6 DPi_ss_m cuidado:AudioFilterbankSpread
Perceptual Spectral skewness y 6 DPi_skew_m cuidado:AudioFilterbandSkewness
Perceptual Spectral kurtosis y 6 DPi_kurto_v cuidado:AudioFilterbankKurtosis
Perceptual Spectral Slope y 6 DPi_slope_v cuidado:AudioFilterbankSlope
Perceptual Spectral Decrease y 1 DPi_decs ¢ cuidado:AudioFilterbankDecrease
Perceptual Spectral Rolloff y 1 DPi_rolloff_v cuidado:AudioFilterbankRolloff
Perceptual Spectral Variation y 3 DPi_variation_v cuidado:AudioFilterbankVariation
Odd to Even Band Ratio y 3 DP_ioeratio_v cuidado:AudioFilterbankOERatio
Band Spectral Deviation y 3 DPi_devs_v cuidado:AudioFilterbankDeviation
Band Tristimulus y 9 DPi_tri_v cuidado:AudioFilterbankTristimulus
Various features
Spectral flatness y 4 DPi_sfm_m mpeg7:AudioSpectrumFlatness
Spectral crest y 4 DPi_scm_m cuidado:AudioSpectrumCrest
Total Number of Features 166
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