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ABSTRACT
In this paper we describe a method to search for environmen-
tal sounds in unstructured databases with user-submitted material.
The goal of the project is to facilitate the design of soundscapes in
virtual environments. We analyze the use of a Support Vector Ma-
chine (SVM) as a learning algorithm to classify sounds according
to a general sound events taxonomy based on ecological acoustics.
In our experiments, we obtain accuracies above 80% using cross-
validation. Finally, we present a web prototype that integrates the
classifier to rank sounds according to their relation to the taxon-
omy concepts.

1. INTRODUCTION

Virtual environments based on realistic simulations of physical
space are becoming a common use of the Internet. Most of them
can be divided among multiplayer games and social environments
used to meet and chat. In some cases, people have even become
interested in purchasing virtual goods and hence virtual economies
have emerged. However, the cost of designing such amount of 3D
spaces is very high. Virtual environments have followed the trend
towards user-centered technologies that dominates the web. Many
programs allow users to create and upload their own models and to
design their spaces. Sites such as Google 3D Warehouse are avail-
able as centralized repositories of 3D models that can be placed in
different environments.

So far, these environments offer very sophisticated visual sim-
ulations but quite basic audio functionality. Still, applications
like Second Life allow users to upload custom sounds for objects.
In this context, open, user-contributed sound repositories such as
freesound.org [1] can be used to improve the acoustic experience
of virtual environments. However, searching for sounds in user-
contributed databases is still problematic. Sounds are often insuf-
ficiently annotated and with very diverse vocabularies [2]. Some
sounds are isolated and segmented, but others consist of very long
recordings containing mixtures of environmental sounds. In this
situation, content-based tools can help improving the search and
retrieval of sounds. For specific domains, such tools can be based
on a priori knowledge and constraints. For the case of designing
the acoustic experience of virtual environments, we do not con-
sider voice and music audio, for which separate channels are typ-
ically allocated, i.e. real user voices for avatars and background
music streams. With respect to indexing and retrieval of environ-
mental sounds for virtual spaces, we are interested in categoriza-
tions that take into account the way we perceive everyday sounds.
In this context, the ideas of Gaver have become commonplace. In

[3], he emphasized the distinction between musical listening (as
defined by Schaeffer [4]) and everyday listening. He also devised
a comprehensive taxonomy of everyday sounds based on the work-
ings of ecological acoustics, while pointing at the problems with
traditional organization of sound effects libraries. The taxonomy
categorizes sounds according to the type of interacting materials
(solids, liquids, gases) and the kind of interaction (e.g for solid
bodies, sounds are classified as impact, deformation, scraping or
rolling). One example of the use of this taxonomy can be found in
the Closed project [5], where it was used to develop its physically-
based sound models [6].

In this paper, we analyze the use of this taxonomy for retriev-
ing audio from unstructured, user-contributed audio repositories.
We test different approaches to description and classification of
sounds according to this taxonomy using SVM. We then use the
learnt models to rank sounds. In addition to the traditional text
search interface, we add the option to filter and sort the results ac-
cording to a category in the taxonomy. This interface makes it eas-
ier to retrieve iconic sounds that represent basic auditory events.
However, the focus of this paper is the classification part, and we
don’t formally evaluate the search interface.

2. RELATED WORK

Automatic analysis and categorization of environmental sounds
has been traditionally related to management of sound effects li-
braries. The taxonomies used in these libraries usually do not at-
tempt to provide a comprehensive organization of sounds. It is
common to find semantic concepts that are well identified as cate-
gories, such as animal sounds or vehicles. This ability for sounds
to represent or evoke certain concepts determines their usefulness
in representation contexts such as video or multimedia content cre-
ation.

Content-based techniques have been applied to limited vocab-
ularies and taxonomies from sound effects libraries. For exam-
ple, good results have been reported [7], [8] when using Hidden
Markov Models (HMM) on rather specific classes of sound ef-
fects. There are two problems with this kind of approach. On the
one hand, working with non comprehensive taxonomies omits the
fact that real world applications will typically need to deal with
much larger vocabularies. Many of these approaches may be dif-
ficult to scale to vocabularies and databases orders of magnitude
larger. On the other hand, they commonly employ small databases
of sounds recorded and edited under controlled conditions. This
means that it is unclear how these methods would generalize to
noisier environments and databases. In particular, we are con-
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cerned with user-contributed media, which involves a wide variety
of situations, recording equipment, motivations and skills.

Previous research works have explored the scalability issue by
using more efficient classifiers. For example in [9], the problem of
extending content-based classification to thousands of labels was
approached by using a nearest-neighbor classifier. The system pre-
sented in [10] bridges the semantic space to the acoustic space by
deriving independent hierarchical representations of both. In [11],
scalability of several classification methods is analyzed for large-
scale audio retrieval.

With respect to noise and real world recordings, another trend
of work has been directed towards the classification of environ-
mental sound using only statistical features, that is, without at-
tempting to identify or isolate sound events [12]. Applications of
these techniques range from analysis and reduction of urban noise,
to detection of sonic context for mobile phones.

In a way, our problem shares some characteristics of both
sound effects and environmental sound classification. This sit-
uation comes from the different perceptions and motivations of
users at a site like freesound.org. Some users will upload sound
effects, and many users are interested especially in downloading
clean sound effects for using them in music or multimedia pro-
ductions. But also it is common to upload raw field recordings of
different locations and situations as a way to share personal expe-
riences.

The specification of a general taxonomy for environmental
sounds remains an elusive problem. Gaver’s taxonomy [3] orga-
nizes sounds according to how the mechanics of the production of
sounds are perceived, from the point of view of ecological acous-
tics. Further research has given some support to his hypothesis
with respect to the perception and categorization of environmental
sounds [13]. The taxonomy offers a coherent and general cate-
gorization of environmental sounds that is well defined for simple
auditory events. However, despite being frequently cited, we don’t
know of other attempts at automatic classification using this tax-
onomy.

Gaver proposed a hierarchical classification space, from broad
classes to simple sonic events (see figure 1). The root class can be
called Interacting Materials, since most generally sounds are pro-
duced as a result of an interaction of materials. At the next level,
the taxonomy divides sounds in three general categories: those
involving vibrating solids, gases and liquids. Finally, basic level
sonic events are shown at the third level, they are defined by the
simple interactions that can cause solids, gases and liquids to pro-
duce sound.

3. CLASSIFICATION OF ENVIRONMENTAL SOUNDS

3.1. Overview

We analyze the use of Gaver’s taxonomy for general audio seg-
ments databases by training and testing a Support Vector Machine
(SVM) classifier over a dataset collected from various sources.
Our first experiment consists in comparing the performance of dif-
ferent sets of features for the task, in order to assess the importance
of describing temporal evolution. A second experiment analyzes
two different definitions of the classification problem: as a hierar-
chical classification or as a direct multiclass problem.

3.2. Datasets creation

For our experiments, we manually selected and labeled sounds ac-
cording to the taxonomy’s categories. We created three datasets:
SoundEvents, SoundFx and Freesound.

The SoundEvents dataset [14] provides examples of many
classes of the taxonomy, although it does not match it completely.
Sounds from this database are planned and recorded in a controlled
setting, and recordings are repeated multiple times. For example,
the sound of metal balls running on plywood is recorded several
times in the same session. We discarded the sounds that would
correspond to complex events due to the interactions of different
materials. A second dataset was collected from a number of sound
effect libraries, with different levels of quality. A small number
of sounds in this dataset was downloaded from online repositories.
Sounds in this dataset generally try to provide a good representa-
tion of specific sounds. For instance, for the explosion category we
select sounds from gunshots, for the ripple category we typically
selected sounds from streams and rivers. Some of these sounds
contain background noise or unrelated sounds. Finally, our third
dataset consists of sounds downloaded from freesound.org. This
set is the noisiest of the three, as sounds are recorded in very dif-
ferent conditions and situations. Most contain background noise
and many are not segmented with the purpose of isolating a partic-
ular sound event.

The collection of sounds in the dataset presented a number
of issues. We now describe the main criteria we used in order to
provide a coherent interpretation of the taxonomy.

First of all, in order to allow our classifier to generalize to
user-submitted audio, we needed to search sounds with a vari-
able recording setup, recording quality and relative microphone
position. Second, we needed to search samples with a less strin-
gent segmentation than the one used in the SoundEvents database,
where the researchers tried to include just one instance of a basic
event in each recorded sample. Thus we considered samples pre-
senting: i) complex temporal pattern repetition of basic events, ii)
sounds generated from compound interaction and iii) sounds gen-
erated by hybrid interaction. Compound interaction happens when
a sound results from the interaction between more than one type
of basic event. This is the case of specific door locks, where the
sound is generated by a mix of impacts, deformations and scrap-
ings; or the case of missiles, where the sound is generated both by
whoosh and explosion. Contrastingly, the sound generated by hy-
brid interaction happens when a given material interacts with one
of a different kind, as in the case of the hybrid event impact-drip,
when water drips onto a solid surface, or in the case of bubbles,
a hybrid between liquid and gas. In order to extend the dataset,
we included sound instances that still can be classified at the basic
level, but under somewhat less restrictive constraints: repetition
patterns of atomic events of the same type, samples containing
only a tiny amount of compound or hybrid interactions and sam-
ples representing different microphone positions, recording setups
and noise conditions.

The taxonomy provides also some parameters related to source
attributes that are percieved through sounds. These parameters
were useful to qualitatively determine whether samples belonged
to a class or not. Some examples: rain was a problematic case,
following the original definition, the Drip basic event is just water
falling into water, with the parameters viscosity, object size, object
shape and force. In comparison, the parameters of the Pour basic
event are viscosity, amount and height. Depending on the par-
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Figure 1: Representation of the Gaver taxonomy.

ticular sample analysed, rain could belong to Drip, if individual
raindrops were clearly identifyable, or to Pour, if the temporal fine
structure was undiscernible and the signal closer to noise. Also, if
the sound clearly indicated water falling down on a surface, as in
the case of rain tapping on a window, the sample was considered
to be a hybrid event and discarded, but if the rain contact with the
surface was faint, we included it in the Liquids category, and it still
needed to be categorized into either Drip or Pour.

3.3. Audio Features

One important question in the discrimination of general auditory
events is how much of our ability comes from extracting prop-
erties of the instantaneous spectrum, and how much results from
following the temporal evolution of the sound. A traditional hy-
pothesis in the field of ecological acoustics was formulated by
Vanderveer, stating that interactions are perceived in the tempo-
ral domain, while objects determine the frequency domain (quoted
in [3]). In several fields involved with discrimination of audio data
it has been common to use the bag of frames approach, meaning
that the order of frames in a sound is ignored, and only the statis-
tics of the frame descriptors are taken into account. This approach
has been shown to be sufficient for discriminating different sound
environments [12]. However, for the case of sound events we think
that time varying aspects of the sound are determinant to recognize
different classes. This is especially true for impulsive classes such
as impacts and explosions or splashes, and to a lower extent by
classes that imply some regularity, like rolling.

In this paper we analyze the performance of some descriptors
extracted from the time series of frame level descriptors for our
classification task. We test two sets of frame-level features:

• MFCC: An implementation of Mel Frequency Cepstrum Co-
efficients using 40 bands and 13 coefficients.

• Spectral: A collection of spectral shape descriptors such
as spectral centroid, kurtosis, skewness, crest, decrease and
rolloff, along with an estimation of pitch and pitch salience.

We use MFCCs as a reference as they are one of the most
commonly used representations of the spectrum. Our second set
includes descriptors of the spectral shape that were popularized
by the MPEG-7 standard [15]. We also include an estimation of
pitch and pitch salience, which have been shown to be relevant for
the discrimination of environmental sounds [13]. We compute the
mean and variance of every frame level descriptor, as well as mean
and variance of its first and second derivative. We also test several
descriptors computed from the temporal evolution of frame level
features, such as the log attack time, a measure of decay [16] and
temporal descriptors derived from statistical moments: temporal

Name Description # desc.
mv mean and variance 2
mvd mv, derivatives 6
mvdad mvd, log attack time and decay 8
mvdadt mvdad, temp. centroid, kurtosis, skewness 9

Table 1: Sets of descriptors extracted from the temporal evolution
of frame-level features, and the number of descriptors per frame
level feature.

Features mv mvd mvdad mvdadt
MFCC 69.35 75.76 74.98 77.80
Spectral 73.17 78.04 80.02 81.29

Table 2: Average classification accuracy (%) for different sets of
features.

centroid, kurtosis and skewness (table 1).

3.4. Experiments

We use a Support Vector Machine (SVM) classifier [17] in order to
assign a given feature vector representing one sound to one of the
classes in the taxonomy. Our first experiment consists in an eval-
uation the performance of the temporal descriptors applied only
to MFCC features. We repeatedly evaluate a one vs one multi-
class SVM classifier using a set of MFCC descriptors where we
progressively add temporal evolution descriptors. We then repeat
the procedure with the second set of descriptors and compare the
results.

The second experiment consists in comparing the one vs one
classifier to a hierarchical classification scheme, where we train
separate models for the top level classes (solids, liquids and gases)
and for each of the top level categories (i.e. for solids we train a
model to discriminate impacts, scraping, rolling and deformation
sounds). For this experiment we combine both MFCC and spectral
shape features with their corresponding temporal descriptors.

Our general procedure starts by resampling the whole database
in order to have a balanced number of examples for each class. We
then evaluate using ten-fold cross-validation. We run this proce-
dure five times and average the results in order to account for the
random resampling of the classes with more examples. We esti-
mate the parameters of the model using grid search only in the
first iteration in order to avoid overfitting each particular sample.
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Method accuracy
Direct 84.10
Hierarchical 80.61

Table 3: Average classification accuracy (%) for direct vs hierar-
chical approaches

4. RESULTS

Table 2 shows the accuracy of the multiclass SVM model for each
set of descriptors. While the most important improvement is typ-
ically obtained by adding derivatives, the experiment shows that
adding the temporal descriptors does help in the discrimination of
the different kinds of event. This is true for both MFCC and spec-
tral shape descriptors. On the other hand, it shows that it is pos-
sible to obtain reasonably good results with a simple and scalable
approach to the description of the temporal evolution of the spec-
trum. Our best result is obtained when combining both descriptor
sets (table 3). As a further step, we plan to compare this results
with more complex approaches such as HMM.

Table 3 shows the comparison of the hierarchical approach to
the direct classification. While in the hierarchical approach more
classification steps are performed, with the corresponding accumu-
lation of error, results are still above 80% on average. This seems
to support the underlying hierarchy in Gaver’s proposal, in the
sense that basic events involving a main class of materials (solid
liquid or gas) share some features and can be discriminated from
other main classes. This approach has the advantage of providing a
model for the top level and consistent models for the lower levels,
which may be used for browsing sound databases.

The results of the classification experiments show that a
widely available and scalable classifier like SVM may suffice to
obtain a reasonable result for such a general set of classes over
noisy datasets. Next, we describe the use of the direct approach to
rank sounds in the freesound.org database. The rank is obtained
by training the multiclass model to support probability estimates
[17]. The probability estimate is then used as a rank for a query
containing one concept of the taxonomy.

5. APPLICATION

A principal objective of the present research is to facilitate
the search of environmental sounds in user-contributed audio
databases. With that purpose, we integrated the SVM models as
a front-end for querying the freesound.org database with a com-
bination of textual input and terms from the ecological acoustics
taxonomy. First, we review how the taxonomy under study is cur-
rently represented as metadata in the freesound.org database by
social tags.

5.1. Taxonomy concepts in the Freesound folksonomy

Since its inception in 2005, freesound.org has become a renowned
repository of sounds with non-commercial license, building an
active online community at the same time. Currently, it stores
84, 222 sounds, labeled with approximately 18000 unique tags.
Sounds are collaboratively labeled with tags, a practice known as
folksonomy [18], leading to an unstructured audio database.

Looking at the database content, one can distinguish three
main types of sounds: environmental (e.g. nature recordings), mu-
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Figure 2: Number of sound files in freesound.org containing tags
or descriptions with Gaver taxonomy’s terms (in red), or their syn-
onyms from Wordnet (in blue).
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Figure 3: Percentage of sound files in Freesound containing tags
or descriptions with Gaver taxonomy’s terms (in red), or their syn-
onyms from Wordnet (in blue). Results are grouped by top cate-
gories (solid, liquid and gas).

sical (e.g. instrument samples, loops) and speech (e.g. individual,
conversational).

Regarding the environmental sounds tagged in freesound.org,
the presence of the studied ecological acoustics taxonomy is
scarce. Figure 2 shows the histogram of the taxonomy’s terms (in
blue), grouped by the top-level categories (solid, liquid and gas).
In order to widen the search, we aggregated to each term various
semantically-related tags that appear as a synset (synonym set) in
the Wordnet database [19]. The number of files retrieved with the
synset are shown in red. Figure 3 shows the histogram of files
grouped by the top categories in the taxonomy, i.e. solid, liquid
and gas. In this case, values indicate the percentage of files com-
pared to the total files in the database (84, 222). Patently, the con-
cepts used in ecological acoustics are infra-represented in the the
folksonomy. Next section describes a practical application of how
content-based retrieval can assist the search with these concepts.
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Figure 4: Screen-shot of the web-based prototype.

5.2. Extending text-queries with a content-based classifier

In this application, we are only concerned with environmental
sounds. Hence, the retrieval of musical and speech sounds would
have a negative effect on our search results. A pre-process to auto-
matically classify these three sound categories is currently beyond
the scope of this paper. Instead, here we opted for filtering the
dataset using tags related to environmental sounds in order to re-
duce the retrieval of musical and speech sounds. The final subset
is built by departing from the “field-recording” tag, which has be-
come one of the most general of the database. We consider this
tag as one of the main themes of the site along with “voice” and
“loop”, which respectively represent speech and music samples.
We compute the cosine distance of all tags to the “field-recording”
tag and keep all tags within a distance below an empirically de-
termined threshold. We limit the search to files labeled with these
tags. Also, we limit the file duration to 10 seconds in order to avoid
the retrieval of long soundscape recordings, reducing the whole
database to 1934 sounds.

On this restricted dataset, our prototype allows searching by
ecological acoustics terms. A free word is input in a text box, and
a term from the taxonomy is selected from a list. The idea behind
this scheme is that the query is composed of a subject represented
by the free text word, and a predicate represented by a class of
event. The query is matched to tags and descriptions, and the re-
sults are ranked according to the output of the automatic classifier
for the given class, as described in section 3. Figure 4 shows the
GUI of the search prototype.

5.3. Discussion

While we didn’t formally evaluate the search interface, we in-
formally analyzed its viability by trying several common queries
composed of a word plus a term of the taxonomy. We com-
pared the results to the ones returned from multi-word queries
by the regular search engine at freesound.org, which matches text
queries to tags and descriptions, and ranks the results by popular-
ity (number of downloads). We observed that for some queries
(e.g. glass+pour) the content-based approach represents a signifi-
cant improvement over the traditional text-based search. In many
cases, content-based indexing helps reducing the effects of ambi-
guity and incomplete or noisy text descriptions. As a side effect,
we observed that the content-based search is much more restric-
tive. Depending on the query, it may return an empty list, if none
of the matched sounds were classified into the specified category.
A development version of the web prototype is publicly available
[20].

6. CONCLUSIONS

This research aims to improve the search of environmental sounds
in large-scale unstructured audio databases. Specifically, we con-
tribute with a content-based analysis and classification framework
built upon the ecological acoustics taxonomy proposed by Gaver
[3]. To our knowledge, previous approaches on content-based
analysis of environmental sounds, have only addressed very con-
crete sound categories (e.g bird calls, sirens, car engine), without
tackling the usage of a general taxonomy.

We proposed a supervised learning approach, and created a
annotated database providing several examples of all categories
present in the taxonomy. By means of an automatic classifier,
the system ranks the sounds according to the acoustic similarity to
each class in the taxonomy. We implemented a search interface to
freesound.org using this system, with promising results. We plan
to experiment with other ways to interact with the database using
this framework, such as a more exploratory browsing interface.
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