nikcleju@15: # -*- coding: utf-8 -*- nikcleju@15: """ nikcleju@17: Main script for exact reconstruction tests. nikcleju@17: Author: Nicolae Cleju nikcleju@17: """ nikcleju@17: __author__ = "Nicolae Cleju" nikcleju@17: __license__ = "GPL" nikcleju@17: __email__ = "nikcleju@gmail.com" nikcleju@15: nikcleju@15: nikcleju@15: import numpy nikcleju@15: import scipy.io nikcleju@15: import math nikcleju@15: import os nikcleju@15: import time nikcleju@17: import multiprocessing nikcleju@17: import sys nikcleju@15: nikcleju@17: # Try to do smart importing of matplotlib nikcleju@15: try: nikcleju@15: import matplotlib nikcleju@15: if os.name == 'nt': nikcleju@15: print "Importing matplotlib with default (GUI) backend... " nikcleju@15: else: nikcleju@15: print "Importing matplotlib with \"Cairo\" backend... " nikcleju@15: matplotlib.use('Cairo') nikcleju@15: import matplotlib.pyplot as plt nikcleju@15: import matplotlib.cm as cm nikcleju@15: import matplotlib.colors as mcolors nikcleju@15: except: nikcleju@15: print "FAIL" nikcleju@15: print "Importing matplotlib.pyplot failed. No figures at all" nikcleju@15: print "Try selecting a different backend" nikcleju@15: nikcleju@15: currmodule = sys.modules[__name__] nikcleju@17: printLock = None # Lock for printing in a thread-safe way nikcleju@17: # Thread-safe variable to store number of finished tasks nikcleju@15: currmodule.proccount = multiprocessing.Value('I', 0) # 'I' = unsigned int, see docs (multiprocessing, array) nikcleju@15: nikcleju@17: # Contains pre-defined simulation parameters nikcleju@15: import stdparams_exact nikcleju@17: nikcleju@17: # Analysis operator and data generation functions nikcleju@15: import AnalysisGenerate nikcleju@15: nikcleju@15: # For exceptions nikcleju@15: import pyCSalgos.BP.l1eq_pd nikcleju@15: import pyCSalgos.NESTA.NESTA nikcleju@15: nikcleju@19: # For plotting with right axes nikcleju@19: import utils nikcleju@19: nikcleju@15: nikcleju@17: nikcleju@15: def initProcess(share, ntasks, printLock): nikcleju@15: """ nikcleju@15: Pool initializer function (multiprocessing) nikcleju@15: Needed to pass the shared variable to the worker processes nikcleju@15: The variables must be global in the module in order to be seen later in run_once_tuple() nikcleju@15: see http://stackoverflow.com/questions/1675766/how-to-combine-pool-map-with-array-shared-memory-in-python-multiprocessing nikcleju@15: """ nikcleju@15: currmodule = sys.modules[__name__] nikcleju@15: currmodule.proccount = share nikcleju@15: currmodule.ntasks = ntasks nikcleju@15: currmodule._printLock = printLock nikcleju@15: nikcleju@15: nikcleju@15: def generateTaskParams(globalparams): nikcleju@15: """ nikcleju@17: Generate a list of task parameters (for parallel running) nikcleju@15: """ nikcleju@15: taskparams = [] nikcleju@15: SNRdb = globalparams['SNRdb'] nikcleju@15: sigma = globalparams['sigma'] nikcleju@15: d = globalparams['d'] nikcleju@15: deltas = globalparams['deltas'] nikcleju@15: rhos = globalparams['rhos'] nikcleju@15: numvects = globalparams['numvects'] nikcleju@15: algos = globalparams['algos'] nikcleju@15: nikcleju@15: # Process parameters nikcleju@15: noiselevel = 1.0 / (10.0**(SNRdb/10.0)); nikcleju@15: nikcleju@15: for delta in deltas: nikcleju@15: for rho in rhos: nikcleju@15: p = round(sigma*d); nikcleju@15: m = round(delta*d); nikcleju@15: l = round(d - rho*m); nikcleju@15: nikcleju@15: # Generate Omega and data based on parameters nikcleju@15: Omega = AnalysisGenerate.Generate_Analysis_Operator(d, p); nikcleju@15: # Optionally make Omega more coherent nikcleju@15: #U,S,Vt = numpy.linalg.svd(Omega); nikcleju@15: #Sdnew = S * (1+numpy.arange(S.size)) # Make D coherent, not Omega! nikcleju@15: #Snew = numpy.vstack((numpy.diag(Sdnew), numpy.zeros((Omega.shape[0] - Omega.shape[1], Omega.shape[1])))) nikcleju@15: #Omega = numpy.dot(U , numpy.dot(Snew,Vt)) nikcleju@15: nikcleju@15: # Generate data nikcleju@15: x0,y,M,Lambda,realnoise = AnalysisGenerate.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0') nikcleju@15: nikcleju@15: # Append task params nikcleju@15: taskparams.append((algos,Omega,y,M,x0)) nikcleju@15: nikcleju@15: return taskparams nikcleju@15: nikcleju@15: def processResults(params, taskresults): nikcleju@15: """ nikcleju@15: Process the raw task results nikcleju@15: """ nikcleju@15: deltas = params['deltas'] nikcleju@15: rhos = params['rhos'] nikcleju@15: algos = params['algos'] nikcleju@15: nikcleju@15: # Init results nikcleju@15: meanmatrix = dict() nikcleju@15: elapsed = dict() nikcleju@15: for algo in algos: nikcleju@15: meanmatrix[algo[1]] = numpy.zeros((rhos.size, deltas.size)) nikcleju@15: elapsed[algo[1]] = 0 nikcleju@15: nikcleju@15: # Process results nikcleju@15: idx = 0 nikcleju@15: for idelta,delta in zip(numpy.arange(deltas.size),deltas): nikcleju@15: for irho,rho in zip(numpy.arange(rhos.size),rhos): nikcleju@15: mrelerr,addelapsed = taskresults[idx] nikcleju@15: idx = idx+1 nikcleju@15: for algotuple in algos: nikcleju@15: meanmatrix[algotuple[1]][irho,idelta] = mrelerr[algotuple[1]] nikcleju@15: if meanmatrix[algotuple[1]][irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][irho,idelta]): nikcleju@15: meanmatrix[algotuple[1]][irho,idelta] = 0 nikcleju@15: elapsed[algotuple[1]] = elapsed[algotuple[1]] + addelapsed[algotuple[1]] nikcleju@15: nikcleju@15: procresults = dict() nikcleju@15: procresults['meanmatrix'] = meanmatrix nikcleju@15: procresults['elapsed'] = elapsed nikcleju@15: return procresults nikcleju@15: nikcleju@15: def saveSim(params, procresults): nikcleju@15: """ nikcleju@15: Save simulation to mat file nikcleju@15: """ nikcleju@15: #tosaveparams = ['d','sigma','deltas','rhos','numvects','SNRdb'] nikcleju@15: #tosaveprocresults = ['meanmatrix','elapsed'] nikcleju@15: nikcleju@15: tosave = dict() nikcleju@15: tosave['meanmatrix'] = procresults['meanmatrix'] nikcleju@15: tosave['elapsed'] = procresults['elapsed'] nikcleju@15: tosave['d'] = params['d'] nikcleju@15: tosave['sigma'] = params['sigma'] nikcleju@15: tosave['deltas'] = params['deltas'] nikcleju@15: tosave['rhos'] = params['rhos'] nikcleju@15: tosave['numvects'] = params['numvects'] nikcleju@15: tosave['SNRdb'] = params['SNRdb'] nikcleju@15: tosave['saveplotbase'] = params['saveplotbase'] nikcleju@15: tosave['saveplotexts'] = params['saveplotexts'] nikcleju@15: # Save algo names as cell array nikcleju@15: obj_arr = numpy.zeros((len(params['algos']),), dtype=numpy.object) nikcleju@15: idx = 0 nikcleju@15: for algotuple in params['algos']: nikcleju@15: obj_arr[idx] = algotuple[1] nikcleju@15: idx = idx+1 nikcleju@15: tosave['algonames'] = obj_arr nikcleju@15: try: nikcleju@15: scipy.io.savemat(params['savedataname'], tosave) nikcleju@15: except: nikcleju@15: print "Save error" nikcleju@15: nikcleju@15: def loadSim(savedataname): nikcleju@15: """ nikcleju@15: Load simulation from mat file nikcleju@15: """ nikcleju@15: mdict = scipy.io.loadmat(savedataname) nikcleju@15: nikcleju@15: params = dict() nikcleju@15: procresults = dict() nikcleju@15: nikcleju@15: procresults['meanmatrix'] = mdict['meanmatrix'][0,0] nikcleju@15: procresults['elapsed'] = mdict['elapsed'] nikcleju@15: params['d'] = mdict['d'] nikcleju@15: params['sigma'] = mdict['sigma'] nikcleju@15: params['deltas'] = mdict['deltas'] nikcleju@15: params['rhos'] = mdict['rhos'] nikcleju@15: params['numvects'] = mdict['numvects'] nikcleju@15: params['SNRdb'] = mdict['SNRdb'] nikcleju@15: params['saveplotbase'] = mdict['saveplotbase'][0] nikcleju@15: params['saveplotexts'] = mdict['saveplotexts'] nikcleju@15: nikcleju@15: algonames = mdict['algonames'][:,0] nikcleju@15: params['algonames'] = [] nikcleju@15: for algoname in algonames: nikcleju@15: params['algonames'].append(algoname[0]) nikcleju@15: nikcleju@15: return params, procresults nikcleju@15: nikcleju@15: def plot(savedataname): nikcleju@15: """ nikcleju@17: Plot results from a mat file. nikcleju@17: The files are saved in the current folder. nikcleju@15: """ nikcleju@15: params, procresults = loadSim(savedataname) nikcleju@15: meanmatrix = procresults['meanmatrix'] nikcleju@15: saveplotbase = params['saveplotbase'] nikcleju@15: saveplotexts = params['saveplotexts'] nikcleju@15: algonames = params['algonames'] nikcleju@15: nikcleju@15: for algoname in algonames: nikcleju@15: plt.figure() nikcleju@15: plt.imshow(meanmatrix[algoname], cmap=cm.gray, norm=mcolors.Normalize(0,1), interpolation='nearest',origin='lower') nikcleju@15: for ext in saveplotexts: nikcleju@15: plt.savefig(saveplotbase + algoname + '.' + ext, bbox_inches='tight') nikcleju@15: #plt.show() nikcleju@15: nikcleju@15: #========================== nikcleju@15: # Main function nikcleju@15: #========================== nikcleju@15: def run(params): nikcleju@15: """ nikcleju@17: Run simulation with given parameters nikcleju@15: """ nikcleju@15: nikcleju@17: print "This is analysis recovery ABS exact script by Nic" nikcleju@18: print "Running simulation" nikcleju@15: nikcleju@15: algos = params['algos'] nikcleju@15: d = params['d'] nikcleju@15: sigma = params['sigma'] nikcleju@15: deltas = params['deltas'] nikcleju@15: rhos = params['rhos'] nikcleju@15: numvects = params['numvects'] nikcleju@15: SNRdb = params['SNRdb'] nikcleju@18: if 'ncpus' in params: nikcleju@18: ncpus = params['ncpus'] nikcleju@18: else: nikcleju@18: ncpus = None nikcleju@15: savedataname = params['savedataname'] nikcleju@15: nikcleju@15: if ncpus is None: nikcleju@15: print " Running in parallel with default",multiprocessing.cpu_count(),"threads using \"multiprocessing\" package" nikcleju@15: if multiprocessing.cpu_count() == 1: nikcleju@15: doparallel = False nikcleju@15: else: nikcleju@15: doparallel = True nikcleju@15: elif ncpus > 1: nikcleju@15: print " Running in parallel with",ncpus,"threads using \"multiprocessing\" package" nikcleju@15: doparallel = True nikcleju@15: elif ncpus == 1: nikcleju@15: print "Running single thread" nikcleju@15: doparallel = False nikcleju@15: else: nikcleju@15: print "Wrong number of threads, exiting" nikcleju@15: return nikcleju@15: nikcleju@15: # Print summary of parameters nikcleju@15: print "Parameters:" nikcleju@15: print " Running algorithms",[algotuple[1] for algotuple in algos] nikcleju@15: nikcleju@15: # Prepare parameters nikcleju@18: print "Generating task parameters..." nikcleju@15: taskparams = generateTaskParams(params) nikcleju@15: nikcleju@15: # Store global variables nikcleju@15: currmodule.ntasks = len(taskparams) nikcleju@15: nikcleju@15: # Run nikcleju@18: print "Running..." nikcleju@15: taskresults = [] nikcleju@15: if doparallel: nikcleju@15: currmodule.printLock = multiprocessing.Lock() nikcleju@15: pool = multiprocessing.Pool(ncpus,initializer=initProcess,initargs=(currmodule.proccount,currmodule.ntasks,currmodule.printLock)) nikcleju@15: taskresults = pool.map(run_once_tuple, taskparams) nikcleju@15: else: nikcleju@15: for taskparam in taskparams: nikcleju@15: taskresults.append(run_once_tuple(taskparam)) nikcleju@15: nikcleju@15: # Process results nikcleju@15: procresults = processResults(params, taskresults) nikcleju@15: nikcleju@15: # Save nikcleju@15: saveSim(params, procresults) nikcleju@15: nikcleju@15: print "Finished." nikcleju@15: nikcleju@15: def run_once_tuple(t): nikcleju@17: """ nikcleju@17: Wrapper for run_once() that explodes the tuple argument t and shows nikcleju@17: the number of finished / remaining tasks nikcleju@17: """ nikcleju@17: nikcleju@17: # Call run_once() here nikcleju@15: results = run_once(*t) nikcleju@15: nikcleju@15: if currmodule.printLock: nikcleju@15: currmodule.printLock.acquire() nikcleju@15: nikcleju@15: currmodule.proccount.value = currmodule.proccount.value + 1 nikcleju@15: print "================================" nikcleju@15: print "Finished task",currmodule.proccount.value,"/",currmodule.ntasks,"tasks remaining",currmodule.ntasks - currmodule.proccount.value,"/",currmodule.ntasks nikcleju@15: print "================================" nikcleju@15: nikcleju@15: currmodule.printLock.release() nikcleju@15: nikcleju@15: return results nikcleju@15: nikcleju@15: def run_once(algos,Omega,y,M,x0): nikcleju@15: """ nikcleju@17: Run single task (i.e. task function) nikcleju@15: """ nikcleju@15: nikcleju@15: d = Omega.shape[1] nikcleju@15: nikcleju@15: nalgos = len(algos) nikcleju@15: nikcleju@15: xrec = dict() nikcleju@15: err = dict() nikcleju@15: relerr = dict() nikcleju@15: elapsed = dict() nikcleju@15: nikcleju@15: # Prepare storage variables for algorithms nikcleju@15: for i,algo in zip(numpy.arange(nalgos),algos): nikcleju@15: xrec[algo[1]] = numpy.zeros((d, y.shape[1])) nikcleju@15: err[algo[1]] = numpy.zeros(y.shape[1]) nikcleju@15: relerr[algo[1]] = numpy.zeros(y.shape[1]) nikcleju@15: elapsed[algo[1]] = 0 nikcleju@15: nikcleju@15: # Run algorithms nikcleju@15: for iy in numpy.arange(y.shape[1]): nikcleju@15: for algofunc,strname in algos: nikcleju@15: try: nikcleju@15: timestart = time.time() nikcleju@15: xrec[strname][:,iy] = algofunc(y[:,iy],M,Omega) nikcleju@15: elapsed[strname] = elapsed[strname] + (time.time() - timestart) nikcleju@15: except pyCSalgos.BP.l1eq_pd.l1eqNotImplementedError as e: nikcleju@15: if currmodule.printLock: nikcleju@15: currmodule.printLock.acquire() nikcleju@15: print "Caught exception when running algorithm",strname," :",e.message nikcleju@15: currmodule.printLock.release() nikcleju@18: except ValueError as e: nikcleju@18: if currmodule.printLock: nikcleju@18: currmodule.printLock.acquire() nikcleju@18: print "Caught ValueError exception when running algorithm",strname," :",e.message nikcleju@18: currmodule.printLock.release() nikcleju@15: err[strname][iy] = numpy.linalg.norm(x0[:,iy] - xrec[strname][:,iy]) nikcleju@15: relerr[strname][iy] = err[strname][iy] / numpy.linalg.norm(x0[:,iy]) nikcleju@15: for algofunc,strname in algos: nikcleju@15: if currmodule.printLock: nikcleju@15: currmodule.printLock.acquire() nikcleju@15: print strname,' : avg relative error = ',numpy.mean(relerr[strname]) nikcleju@15: currmodule.printLock.release() nikcleju@15: nikcleju@15: # Prepare results nikcleju@15: #mrelerr = dict() nikcleju@15: #for algotuple in algos: nikcleju@15: # mrelerr[algotuple[1]] = numpy.mean(relerr[algotuple[1]]) nikcleju@15: #return mrelerr,elapsed nikcleju@15: nikcleju@15: exactthr = 1e-6 nikcleju@15: mrelerr = dict() nikcleju@15: for algotuple in algos: nikcleju@15: mrelerr[algotuple[1]] = float(numpy.count_nonzero(relerr[algotuple[1]] < exactthr)) / y.shape[1] nikcleju@15: return mrelerr,elapsed nikcleju@15: nikcleju@15: nikcleju@15: def testMatlab(): nikcleju@17: """ nikcleju@17: For debugging only. nikcleju@17: Load parameters from a mat file saved by Matlab. nikcleju@17: """ nikcleju@15: mdict = scipy.io.loadmat("E:\\CS\\Ale mele\\Analysis_ExactRec\\temp.mat") nikcleju@15: algos = stdparams_exact.std1()[0] nikcleju@15: res = run_once(algos, mdict['Omega'].byteswap().newbyteorder(),mdict['y'],mdict['M'],mdict['x0']) nikcleju@15: nikcleju@15: def generateFig(): nikcleju@17: """ nikcleju@17: Generates figures from paper "Analysis-based sparse reconstruction with synthesis-based solvers". nikcleju@17: The figures are saved in the current folder. nikcleju@17: """ nikcleju@20: run(stdparams_exact.params1) nikcleju@19: #plot(stdparams_exact.params1['savedataname']) nikcleju@19: utils.replot_exact(stdparams_exact.params1['savedataname'], nikcleju@19: algonames = None, # will read them from mat file nikcleju@19: doshow=False, nikcleju@19: dosave=True, nikcleju@19: saveplotbase=stdparams_exact.params1['saveplotbase'], nikcleju@19: saveplotexts=stdparams_exact.params1['saveplotexts']) nikcleju@15: nikcleju@15: # Script main nikcleju@15: if __name__ == "__main__": nikcleju@15: nikcleju@17: # Set the number of cpus for paraller running (or comment to leave default = max) nikcleju@17: #stdparams_exact.paramstest['ncpus'] = 1 nikcleju@18: nikcleju@18: # Run test parameters nikcleju@18: #stdparams_exact.paramstest['ncpus'] = 1 nikcleju@18: #run(stdparams_exact.paramstest) nikcleju@18: #plot(stdparams_exact.paramstest['savedataname']) nikcleju@18: nikcleju@18: #stdparams_exact.params1['ncpus'] = 1 nikcleju@17: generateFig() nikcleju@17: