nikcleju@14: # -*- coding: utf-8 -*- nikcleju@14: """ nikcleju@17: Defines standard parameters for exact reconstruction simulation nikcleju@17: Author: Nicolae Cleju nikcleju@17: """ nikcleju@17: __author__ = "Nicolae Cleju" nikcleju@17: __license__ = "GPL" nikcleju@17: __email__ = "nikcleju@gmail.com" nikcleju@14: nikcleju@14: nikcleju@14: import numpy nikcleju@17: nikcleju@17: # Solver algorithms to run nikcleju@14: from algos import * nikcleju@14: nikcleju@17: nikcleju@17: # Test parameters nikcleju@15: paramstest = dict() nikcleju@15: paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms nikcleju@15: #paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms nikcleju@15: paramstest['d'] = 50.0 nikcleju@15: paramstest['sigma'] = 1.2 nikcleju@15: paramstest['deltas'] = numpy.array([0.05, 0.45, 0.95]) nikcleju@15: paramstest['rhos'] = numpy.array([0.05, 0.45, 0.95]) nikcleju@15: #deltas = numpy.array([0.6]) nikcleju@15: #deltas = numpy.arange(0.05,1.,0.05) nikcleju@15: #rhos = numpy.array([0.05]) nikcleju@15: paramstest['numvects'] = 10; # Number of vectors to generate nikcleju@15: paramstest['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy nikcleju@15: paramstest['savedataname'] = 'exact_pt_stdtest.mat' nikcleju@15: paramstest['saveplotbase'] = 'exact_pt_stdtest_' nikcleju@15: paramstest['saveplotexts'] = ('png','pdf','eps') nikcleju@14: nikcleju@14: # Standard parameters 1 nikcleju@14: # All algorithms, 100 vectors nikcleju@17: # d = 200, sigma = 1.2, delta and rho full resolution (0.05 step) nikcleju@17: # Virtually no noise (100db) nikcleju@15: params1 = dict() nikcleju@15: params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms nikcleju@17: params1['d'] = 200.0; nikcleju@15: params1['sigma'] = 1.2 nikcleju@15: params1['deltas'] = numpy.arange(0.05,1.,0.05) nikcleju@15: params1['rhos'] = numpy.arange(0.05,1.,0.05) nikcleju@15: params1['numvects'] = 100; # Number of vectors to generate nikcleju@15: params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy nikcleju@15: params1['savedataname'] = 'exact_pt_std1.mat' nikcleju@15: params1['saveplotbase'] = 'exact_pt_std1_' nikcleju@15: params1['saveplotexts'] = ('png','pdf','eps') nikcleju@14: nikcleju@15: nikcleju@14: # Standard parameters 2 nikcleju@14: # All algorithms, 100 vectors nikcleju@17: # d = 20, sigma = 10, delta and rho full resolution (0.05 step) nikcleju@17: # Virtually no noise (100db) nikcleju@15: params2 = dict() nikcleju@15: params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms nikcleju@15: params2['d'] = 20.0 nikcleju@15: params2['sigma'] = 10.0 nikcleju@15: params2['deltas'] = numpy.arange(0.05,1.,0.05) nikcleju@15: params2['rhos'] = numpy.arange(0.05,1.,0.05) nikcleju@15: params2['numvects'] = 100; # Number of vectors to generate nikcleju@15: params2['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy nikcleju@15: params2['savedataname'] = 'exact_pt_std2.mat' nikcleju@15: params2['saveplotbase'] = 'exact_pt_std2_' nikcleju@15: params2['saveplotexts'] = ('png','pdf','eps')