view stdparams_approx.py @ 17:7fdf964f4edd

Added docstrings to files and functions
author Nic Cleju <nikcleju@gmail.com>
date Tue, 03 Apr 2012 16:27:18 +0300
parents a27cfe83fe12
children 2837cfeaf353
line wrap: on
line source
# -*- coding: utf-8 -*-
"""
Defines standard parameters for approximate reconstruction simulation

Author: Nicolae Cleju
"""
__author__ = "Nicolae Cleju"
__license__ = "GPL"
__email__ = "nikcleju@gmail.com"

import numpy

# Solver algorithms to run
from algos import *

# Test parameters
paramstest = dict()
paramstest['algosN'] = nesta,      # tuple of algorithms not depending on lambda
paramstest['algosL'] = lambda_sl0,  # tuple of algorithms depending on lambda (ABS-lambda)
paramstest['d'] = 50.0
paramstest['sigma'] = 2.0
paramstest['deltas'] = numpy.array([0.05, 0.45, 0.95])
paramstest['rhos'] = numpy.array([0.05, 0.45, 0.95])
#deltas = numpy.array([0.95])
#deltas = numpy.arange(0.05,1.,0.05)
#rhos = numpy.array([0.05])
paramstest['numvects'] = 10;  # Number of vectors to generate
paramstest['SNRdb'] = 20.;    # This is norm(signal)/norm(noise), so power, not energy
# Values for lambda
#lambdas = [0 10.^linspace(-5, 4, 10)];
paramstest['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000])
paramstest['savedataname'] = 'approx_pt_stdtest.mat'
paramstest['saveplotbase'] = 'approx_pt_stdtest_'
paramstest['saveplotexts'] = ('png','pdf','eps')


# Standard parameters 1
# All algorithms, 100 vectors
# d = 50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000
# Noise 40db
params1 = dict()
params1['algosN'] = gap,mixed_sl0,mixed_bp,nesta      # tuple of algorithms not depending on lambda
params1['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst  # tuple of algorithms depending on lambda (ABS-lambda)
params1['d'] = 50.0
params1['sigma'] = 2.0
params1['deltas'] = numpy.arange(0.05,1.,0.05)
params1['rhos'] = numpy.arange(0.05,1.,0.05)
params1['numvects'] = 10;  # Number of vectors to generate
params1['SNRdb'] = 40.;    # This is norm(signal)/norm(noise), so power, not energy
params1['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000])
params1['savedataname'] = 'approx_pt_stdtest.mat'
params1['saveplotbase'] = 'approx_pt_stdtest_'
params1['saveplotexts'] = ('png','pdf','eps')

# Standard parameters 2
# All algorithms, 100 vectors
# d = 20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000
# Noise 40db
params2 = dict()
params2['algosN'] = gap,mixed_sl0,mixed_bp,nesta      # tuple of algorithms not depending on lambda
params2['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst  # tuple of algorithms depending on lambda (ABS-lambda)
params2['d'] = 20.0
params2['sigma'] = 10.0
params2['deltas'] = numpy.arange(0.05,1.,0.05)
params2['rhos'] = numpy.arange(0.05,1.,0.05)
params2['numvects'] = 10;  # Number of vectors to generate
params2['SNRdb'] = 40.;    # This is norm(signal)/norm(noise), so power, not energy
params2['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000])
params2['savedataname'] = 'approx_pt_stdtest.mat'
params2['saveplotbase'] = 'approx_pt_stdtest_'
params2['saveplotexts'] = ('png','pdf','eps')
  
  
# Standard parameters 3
# All algorithms, 100 vectors
# d = 50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000
# Identical with 1 but with 20dB SNR noise
params3 = dict()
params3['algosN'] = gap,mixed_sl0,mixed_bp,nesta      # tuple of algorithms not depending on lambda
params3['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst  # tuple of algorithms depending on lambda (ABS-lambda)
params3['d'] = 50.0
params3['sigma'] = 2.0
params3['deltas'] = numpy.arange(0.05,1.,0.05)
params3['rhos'] = numpy.arange(0.05,1.,0.05)
params3['numvects'] = 10;  # Number of vectors to generate
params3['SNRdb'] = 20.;    # This is norm(signal)/norm(noise), so power, not energy
params3['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000])
params3['savedataname'] = 'approx_pt_stdtest.mat'
params3['saveplotbase'] = 'approx_pt_stdtest_'
params3['saveplotexts'] = ('png','pdf','eps')
          
# Standard parameters 4
# All algorithms, 100 vectors
# d = 20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000
# Identical to 2 but with 20dB SNR noise
params4 = dict()
params4['algosN'] = gap,mixed_sl0,mixed_bp,nesta      # tuple of algorithms not depending on lambda
params4['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst  # tuple of algorithms depending on lambda (ABS-lambda)
params4['d'] = 20.0
params4['sigma'] = 10.0
params4['deltas'] = numpy.arange(0.05,1.,0.05)
params4['rhos'] = numpy.arange(0.05,1.,0.05)
params4['numvects'] = 10;  # Number of vectors to generate
params4['SNRdb'] = 20.;    # This is norm(signal)/norm(noise), so power, not energy
params4['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000])
params4['savedataname'] = 'approx_pt_stdtest.mat'
params4['saveplotbase'] = 'approx_pt_stdtest_'
params4['saveplotexts'] = ('png','pdf','eps')