Mercurial > hg > absrec
view stdparams_approx.py @ 17:7fdf964f4edd
Added docstrings to files and functions
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Tue, 03 Apr 2012 16:27:18 +0300 |
parents | a27cfe83fe12 |
children | 2837cfeaf353 |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Defines standard parameters for approximate reconstruction simulation Author: Nicolae Cleju """ __author__ = "Nicolae Cleju" __license__ = "GPL" __email__ = "nikcleju@gmail.com" import numpy # Solver algorithms to run from algos import * # Test parameters paramstest = dict() paramstest['algosN'] = nesta, # tuple of algorithms not depending on lambda paramstest['algosL'] = lambda_sl0, # tuple of algorithms depending on lambda (ABS-lambda) paramstest['d'] = 50.0 paramstest['sigma'] = 2.0 paramstest['deltas'] = numpy.array([0.05, 0.45, 0.95]) paramstest['rhos'] = numpy.array([0.05, 0.45, 0.95]) #deltas = numpy.array([0.95]) #deltas = numpy.arange(0.05,1.,0.05) #rhos = numpy.array([0.05]) paramstest['numvects'] = 10; # Number of vectors to generate paramstest['SNRdb'] = 20.; # This is norm(signal)/norm(noise), so power, not energy # Values for lambda #lambdas = [0 10.^linspace(-5, 4, 10)]; paramstest['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) paramstest['savedataname'] = 'approx_pt_stdtest.mat' paramstest['saveplotbase'] = 'approx_pt_stdtest_' paramstest['saveplotexts'] = ('png','pdf','eps') # Standard parameters 1 # All algorithms, 100 vectors # d = 50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Noise 40db params1 = dict() params1['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params1['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) params1['d'] = 50.0 params1['sigma'] = 2.0 params1['deltas'] = numpy.arange(0.05,1.,0.05) params1['rhos'] = numpy.arange(0.05,1.,0.05) params1['numvects'] = 10; # Number of vectors to generate params1['SNRdb'] = 40.; # This is norm(signal)/norm(noise), so power, not energy params1['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) params1['savedataname'] = 'approx_pt_stdtest.mat' params1['saveplotbase'] = 'approx_pt_stdtest_' params1['saveplotexts'] = ('png','pdf','eps') # Standard parameters 2 # All algorithms, 100 vectors # d = 20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Noise 40db params2 = dict() params2['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params2['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) params2['d'] = 20.0 params2['sigma'] = 10.0 params2['deltas'] = numpy.arange(0.05,1.,0.05) params2['rhos'] = numpy.arange(0.05,1.,0.05) params2['numvects'] = 10; # Number of vectors to generate params2['SNRdb'] = 40.; # This is norm(signal)/norm(noise), so power, not energy params2['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) params2['savedataname'] = 'approx_pt_stdtest.mat' params2['saveplotbase'] = 'approx_pt_stdtest_' params2['saveplotexts'] = ('png','pdf','eps') # Standard parameters 3 # All algorithms, 100 vectors # d = 50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Identical with 1 but with 20dB SNR noise params3 = dict() params3['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params3['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) params3['d'] = 50.0 params3['sigma'] = 2.0 params3['deltas'] = numpy.arange(0.05,1.,0.05) params3['rhos'] = numpy.arange(0.05,1.,0.05) params3['numvects'] = 10; # Number of vectors to generate params3['SNRdb'] = 20.; # This is norm(signal)/norm(noise), so power, not energy params3['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) params3['savedataname'] = 'approx_pt_stdtest.mat' params3['saveplotbase'] = 'approx_pt_stdtest_' params3['saveplotexts'] = ('png','pdf','eps') # Standard parameters 4 # All algorithms, 100 vectors # d = 20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Identical to 2 but with 20dB SNR noise params4 = dict() params4['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params4['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) params4['d'] = 20.0 params4['sigma'] = 10.0 params4['deltas'] = numpy.arange(0.05,1.,0.05) params4['rhos'] = numpy.arange(0.05,1.,0.05) params4['numvects'] = 10; # Number of vectors to generate params4['SNRdb'] = 20.; # This is norm(signal)/norm(noise), so power, not energy params4['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) params4['savedataname'] = 'approx_pt_stdtest.mat' params4['saveplotbase'] = 'approx_pt_stdtest_' params4['saveplotexts'] = ('png','pdf','eps')