Mercurial > hg > absrec
diff stdparams_approx.py @ 21:d395461b92ae tip
Lots and lots of modifications. Approximate recovery script working.
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Mon, 23 Apr 2012 10:54:57 +0300 |
parents | 2837cfeaf353 |
children |
line wrap: on
line diff
--- a/stdparams_approx.py Thu Apr 05 14:00:13 2012 +0300 +++ b/stdparams_approx.py Mon Apr 23 10:54:57 2012 +0300 @@ -15,8 +15,10 @@ # Test parameters paramstest = dict() -paramstest['algosN'] = nesta, # tuple of algorithms not depending on lambda -paramstest['algosL'] = lambda_sl0, # tuple of algorithms depending on lambda (ABS-lambda) +#paramstest['algosN'] = nesta, # tuple of algorithms not depending on lambda +#paramstest['algosL'] = lambda_sl0, # tuple of algorithms depending on lambda (ABS-lambda) +paramstest['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda +paramstest['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst paramstest['d'] = 50.0 paramstest['sigma'] = 2.0 paramstest['deltas'] = numpy.array([0.05, 0.45, 0.95]) @@ -25,7 +27,7 @@ #deltas = numpy.arange(0.05,1.,0.05) #rhos = numpy.array([0.05]) paramstest['numvects'] = 10; # Number of vectors to generate -paramstest['SNRdb'] = 20.; # This is norm(signal)/norm(noise), so power, not energy +paramstest['SNRdb'] = 40.; # This is norm(signal)/norm(noise), so power, not energy # Values for lambda #lambdas = [0 10.^linspace(-5, 4, 10)]; paramstest['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) @@ -34,7 +36,7 @@ paramstest['saveplotexts'] = ('png','pdf','eps') -# Test parameters +# Prove 11 convergence paramsl1prove = dict() paramsl1prove['algosN'] = nesta, # tuple of algorithms not depending on lambda paramsl1prove['algosL'] = lambda_bp, # tuple of algorithms depending on lambda (ABS-lambda) @@ -58,14 +60,14 @@ params1['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params1['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) params1['d'] = 50.0 -params1['sigma'] = 2.0 +params1['sigma'] = 1.2 params1['deltas'] = numpy.arange(0.05,1.,0.05) params1['rhos'] = numpy.arange(0.05,1.,0.05) -params1['numvects'] = 10; # Number of vectors to generate +params1['numvects'] = 100; # Number of vectors to generate params1['SNRdb'] = 40.; # This is norm(signal)/norm(noise), so power, not energy params1['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) -params1['savedataname'] = 'approx_pt_stdtest.mat' -params1['saveplotbase'] = 'approx_pt_stdtest_' +params1['savedataname'] = 'approx_pt_params1.mat' +params1['saveplotbase'] = 'approx_pt_params1_' params1['saveplotexts'] = ('png','pdf','eps') # Standard parameters 2 @@ -75,15 +77,15 @@ params2 = dict() params2['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params2['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) -params2['d'] = 20.0 -params2['sigma'] = 10.0 +params2['d'] = 50.0 +params2['sigma'] = 2 params2['deltas'] = numpy.arange(0.05,1.,0.05) params2['rhos'] = numpy.arange(0.05,1.,0.05) -params2['numvects'] = 10; # Number of vectors to generate +params2['numvects'] = 100; # Number of vectors to generate params2['SNRdb'] = 40.; # This is norm(signal)/norm(noise), so power, not energy params2['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) -params2['savedataname'] = 'approx_pt_stdtest.mat' -params2['saveplotbase'] = 'approx_pt_stdtest_' +params2['savedataname'] = 'approx_pt_params2.mat' +params2['saveplotbase'] = 'approx_pt_params2_' params2['saveplotexts'] = ('png','pdf','eps') @@ -95,14 +97,15 @@ params3['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params3['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) params3['d'] = 50.0 -params3['sigma'] = 2.0 +params3['sigma'] = 1.2 params3['deltas'] = numpy.arange(0.05,1.,0.05) params3['rhos'] = numpy.arange(0.05,1.,0.05) -params3['numvects'] = 10; # Number of vectors to generate +params3['numvects'] = 100; # Number of vectors to generate params3['SNRdb'] = 20.; # This is norm(signal)/norm(noise), so power, not energy params3['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) -params3['savedataname'] = 'approx_pt_stdtest.mat' -params3['saveplotbase'] = 'approx_pt_stdtest_' +#params3['lambdas'] = numpy.array([0., 0.01, 0.1, 1, 10, 100]) +params3['savedataname'] = 'approx_pt_params3.mat' +params3['saveplotbase'] = 'approx_pt_params3_' params3['saveplotexts'] = ('png','pdf','eps') # Standard parameters 4 @@ -112,13 +115,50 @@ params4 = dict() params4['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda params4['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) -params4['d'] = 20.0 -params4['sigma'] = 10.0 +params4['d'] = 50.0 +params4['sigma'] = 2.0 params4['deltas'] = numpy.arange(0.05,1.,0.05) params4['rhos'] = numpy.arange(0.05,1.,0.05) -params4['numvects'] = 10; # Number of vectors to generate +params4['numvects'] = 100; # Number of vectors to generate params4['SNRdb'] = 20.; # This is norm(signal)/norm(noise), so power, not energy params4['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) -params4['savedataname'] = 'approx_pt_stdtest.mat' -params4['saveplotbase'] = 'approx_pt_stdtest_' +#params4['lambdas'] = numpy.array([0., 0.01, 0.1, 1, 10, 100]) +params4['savedataname'] = 'approx_pt_params4.mat' +params4['saveplotbase'] = 'approx_pt_params4_' params4['saveplotexts'] = ('png','pdf','eps') + + +# Standard parameters 5 +# All algorithms, 100 vectors +# d = 50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 +# VIRTUALLY NO NOISE, Noise 200db +params5 = dict() +params5['algosN'] = gap,mixed_sl0,mixed_bp,nesta # tuple of algorithms not depending on lambda +params5['algosL'] = lambda_sl0,lambda_bp,lambda_ompeps,lambda_tst # tuple of algorithms depending on lambda (ABS-lambda) +params5['d'] = 50.0 +params5['sigma'] = 1.2 +params5['deltas'] = numpy.arange(0.05,1.,0.05) +params5['rhos'] = numpy.arange(0.05,1.,0.05) +params5['numvects'] = 10; # Number of vectors to generate +params5['SNRdb'] = 200.; # This is norm(signal)/norm(noise), so power, not energy +params5['lambdas'] = numpy.array([0., 0.0001, 0.01, 1, 100, 10000]) +params5['savedataname'] = 'approx_pt_params5.mat' +params5['saveplotbase'] = 'approx_pt_params5_' +params5['saveplotexts'] = ('png','pdf','eps') + +params3sl0 = dict() +params3sl0['algosN'] = mixed_sl0, # tuple of algorithms not depending on lambda +params3sl0['algosL'] = lambda_sl0, # tuple of algorithms depending on lambda (ABS-lambda) +params3sl0['d'] = 50.0 +params3sl0['sigma'] = 1.2 +params3sl0['deltas'] = numpy.arange(0.05,1.,0.25) +params3sl0['rhos'] = numpy.arange(0.05,1.,0.25) +#params3sl0['deltas'] = numpy.array([0.85]) +#params3sl0['rhos'] = numpy.array([0.15]) +params3sl0['numvects'] = 10; # Number of vectors to generate +params3sl0['SNRdb'] = 20.; # This is norm(signal)/norm(noise), so power, not energy +#params3sl0['lambdas'] = numpy.array([0., 0.01, 0.1, 1, 10, 100]) +params3sl0['lambdas'] = numpy.array([0.0001, 10000]) +params3sl0['savedataname'] = 'approx_pt_params3sl0.mat' +params3sl0['saveplotbase'] = 'approx_pt_params3sl0_' +params3sl0['saveplotexts'] = ('png','pdf','eps') \ No newline at end of file