
SOUND SOFTWARE: TOWARDS SOFTWARE REUSE IN AUDIO AND MUSIC RESEARCH

Chris Cannam, Luı́s A. Figueira and Mark D. Plumbley

Queen Mary University of London
Centre for Digital Music

{chris.cannam, luis.figueira, mark.plumbley}@eecs.qmul.ac.uk

ABSTRACT

Although researchers are increasingly aware of the need to publish
and maintain software code alongside their results, practical barri-
ers prevent this from happening in many cases. We examine these
barriers, propose an incremental approach to overcoming some of
them, and describe the Sound Software project, an effort to support
software development practice in the UK audio and music research
community. Finally we make some recommendations for research
groups seeking to improve their own researchers’ software practice.

Index Terms— Programming, Reproducible research, Software
reuse, Software tools, Scientific computing

1. INTRODUCTION

Much research in audio and music informatics involves the develop-
ment of new computational methods implemented in software and
the evaluation of new methods against earlier work also implemented
in software. Both of these can be problematic in practice.

First, researchers in the audio and music research community—
including those in the group represented by the present authors,
the Centre for Digital Music (C4DM) at Queen Mary University of
London—come from a wide range of backgrounds besides signal
processing, including electronics, computer science, music, infor-
mation sciences, dance, performance, and data sonification. In many
of these fields, researchers do not have the skills or desire to be-
come involved in traditional software development practice or in
publication and maintenance of code.

Second, there are technical and logistical reasons why software
developed during earlier research becomes unavailable for subse-
quent use or development even if it has been published. These in-
clude platform incompatibilities and obsolescence, or legal limita-
tions on distribution or reuse.

In this paper we discuss some of the practical constraints on
application of reproducible research principles in connection with
reuse of research software. We then explore an incremental approach
toward better practice. Finally we make some early recommenda-
tions for research groups that wish to improve software development
practice in their work.

2. REPRODUCIBLE RESEARCH

Some researchers have come to realize that traditional methods of
disseminating research outputs based on the published paper only
are no longer sufficient for computational science research. The al-
gorithms and parameters involved are often so complex that the de-
scription in the paper is no longer sufficient to reproduce the results.
As an alternative approach, Donoho and colleagues at Stanford have,

since the mid 1990s, aimed to carry out “Reproducible Research” by
providing the paper, source code, and data, sufficient for other re-
searchers to reproduce the same results [1].

Recent years have seen some moves to promote this philosophy
across the signal processing research community. A special session
was organised at ICASSP 2007 [2], and special issues of IEEE Sig-
nal Processing Magazine [3] and Computing in Science and Engi-
neering [4] on this subject both appeared in 2009. The IEEE Signal
Processing society now encourages Reproducible Research, allow-
ing links from the online journal repository IEEE Xplore to the code
and data associated with a publication [3].

Actions such as these promote the idea that research results in
signal processing should be presented not simply as a printed paper,
but as a compendium [5] including the paper, research data, and code.
Vandewalle et al [3] also created a Reproducible Research Reposi-
tory1, designed to promote reproducible research by requiring the
authors of a paper to upload the code and data used in the experi-
ments. Readers can then comment on a publication and evaluate the
reproducibility of the work.

However, although the Reproducible Research principle pro-
poses a comprehensive solution to the problem of code dissemina-
tion, our experience has been that take-up in the audio and music
research field is limited. Why?

3. UNDERSTANDING REAL-WORLD LIMITATIONS ON
SOFTWARE PRACTICE

In order to better understand the reality faced by the audio and mu-
sic research community, we conducted an online survey on software
usage and development [6]. This survey opened in October 2010
and was advertised to a number of senior researchers in other groups
around the UK. We asked for detailed information about the software
usage, authorship and publication practices of researchers, with the
aim of obtaining a number of individual case points for further exam-
ination as well as some broad numerical results. The survey closed
in April 2011, with 54 complete and 23 partially complete responses.
There were responses from at least 16 different institutions, with a
number of common issues reported.

Some 80% of respondents reported developing software them-
selves during research and 40% of those said that they took steps to
ensure reproducibility of their publications. Respondents described
taking a number of positive steps such as using standard, publicly-
available datasets and calibration procedures when performing mea-
surements, or documenting code and data so that they or other re-
searchers in their group could reproduce the results later.

However, respondents’ comments suggested that they did not
always count publication of software among their steps toward re-

1http://rr.epfl.ch/



producibility. Only 35% of those respondents who reported both de-
veloping software and taking steps to reproducibility also reported
having in fact published any code.

Our respondents cited as obstacles to the publication of code
lack of time, copyright restrictions, and the potential for future com-
mercial use. A broader study into science research across several
subject areas by the UK Research Information Network [7] addition-
ally identified inhibiting factors for open sharing of data and code in-
cluding: lack of evidence of benefits, cultures of independence and
competition, and quality concerns. Similar findings appear in [8].

Besides these practical obstacles, undertaking reproducible re-
search takes effort early in the research cycle. This happens before
the benefits are necessarily apparent, and while the value of the re-
search is still unclear. Once results have been produced and a paper
written there is little apparent incentive to make the research repro-
ducible. Furthermore, assessments such as the English “Research
Excellence Framework” [9] typically do not identify software code
among assessed research outputs.

A possible reason why reproducibility efforts do not happen ear-
lier is that researchers are often self-trained in software development.
Therefore they make little use of standard software engineering prac-
tices that could facilitate open dissemination of code, such as collab-
orative development and the use of public code repositories. A study
by Hannay et al [10] found that for developing and using scientific
software, informal self-study or learning from peers was common-
place. The same study found that scientists usually developed and
used software on their own desktop computers, rather than servers
provided for the purpose of running scientific software. In our sur-
vey, 51% of respondents who developed software said that their code
did not leave their own computer, and 59% said they did not use any
version control software.

Not only does software often go un-published; software that is
published is often unavailable for future users because of platform
incompatibilities. For example, in the well-known subject of mu-
sical beat tracking, the method of Scheirer et al [11] was written
for a legacy platform and is now only available by informal means;
that of Goto [12] was written for a parallel architecture no longer in
wide use and never publicly released; and that of Hainsworth [13]
was written in MATLAB with a Windows-specific DLL component
and only runs on a single platform. In many of the fields within
this community, researchers lack the skills or desire to grapple with
code if it will not immediately run on a platform they have avail-
able. Where they do produce code, they use a variety of platforms
and batch and real-time environments. Among technologies used by
respondents to our survey were MATLAB and numerous of its tool-
boxes, Max/MSP, C++ and OpenFrameworks, Juce, HTK and MPTK,
SuperCollider, Python, and Clojure.

4. SUSTAINABLE SOFTWARE: A BOTTOM-UP
APPROACH

Our approach to the sustainable software problem is to facilitate in-
cremental improvements to the way software is managed during re-
search. We have attempted to do this by identifying those practical
barriers to software reuse that admit straightforward removal or mit-
igation through simple educational and technical measures.

While we support the goal of reproducible research, and aim
to encourage open publication of code and data linked with paper
publications, we believe that this goal is more easily approached in-
crementally. We maintain that researchers will appreciate improve-
ments to software development practice, regardless of their beliefs
or intentions with regard to reproducible research. By helping re-

searchers to feel comfortable with managing provenance and ver-
sioning for software, with collaborative development of code, and
with the perception of code as something that may readily be reused,
we aim to prepare ground in which open and reproducible publica-
tion can naturally grow.

Further, the software lifecycle does not end with publication.
Software that is to be used needs maintenance, and any proposal
to help researchers reuse software more easily needs to address the
problem that such software is not always in a reusable state. Our
direct concern therefore is sustainability and reusability rather than
reproducibility.

While we cannot address all possible barriers to software pub-
lication and reuse, from the issues arising in Section 3 above we
identify four specific barriers that we consider to be approachable:
lack of education and confidence with code; lack of facilities and
tools to support collaborative development; lack of incentive to dis-
tribute software (given the academic focus on paper publications);
and reusability problems caused by platform incompatibilities.

4.1. Barrier: Lack of education and confidence with code

In Section 3 we noted that researchers are largely self-trained in soft-
ware development. This can lead to problems with software struc-
ture and lack of testing [14]. Although software development is a
deep subject, our belief is that worthwhile improvements to normal
working practice can follow relatively small amounts of training.

Therefore in November 2010 we organised an Autumn School
for researchers, presented by Dr Greg Wilson and based on his Soft-
ware Carpentry materials [15]. This week-long residential course,
for 20 audio and music researchers from groups around the UK,
taught fundamentals of software development. These included ver-
sion control for software, unit testing and test-driven development,
Python syntax and structure, and managing experimental datasets
with sqlite. We have made available all of the teaching material from
the Autumn School in online videos.2

A subsequent online poll of attendees [16] supported the view
that training in even the most basic software development skills may
be well received by, and beneficial to, researchers. Attendees identi-
fied program design, testing and validation, and provenance and re-
producibility as particularly valuable areas covered. These are areas
in which the simplest possible introductions to program structure,
test-driven development, and version control can provide sufficient
provocation for the researcher to re-evaluate their own practices.

4.2. Barrier: Lack of facilities and tools

4.2.1. Facilities for code hosting and version control

Researchers cannot make use of version control and collaborative
development facilities if they are unavailable or unknown to them.
Few of the attendees at our Autumn School (Section 4.1) were aware
of such facilities being provided by their institutions, and in our sur-
vey (Section 3) only 41% of respondents who wrote software said
they ever used them. This is consistent with experience in our own
group, where version control has been used only sporadically.

To address this issue, we developed the SoundSoftware code
site3 as a service which audio and music researchers in the UK may
use for collaborative development and as a version control and code
hosting facility. The site is designed to help researchers whose in-
stitutions have no suitable facility or who need to collaborate with

2http://soundsoftware.ac.uk/autumnschool2010video/
3http://code.soundsoftware.ac.uk/



individuals at other institutions in a way that their own facilities do
not support. Any UK researcher in the field can register and start
their own projects. Research groups as a whole may also make use
of the site, and at C4DM we use it to provide version control to our
own researchers.

The site is implemented using a custom version of the Redmine4

project management application, together with Mercurial distributed
version control. The software implementation of our code site is
public, available through a project on the site itself.

We designed three aspects of the code site to contribute to sus-
tainability and code reuse for researchers, distinguishing this site
from general-purpose code hosting facilities such as SourceForge5,
Google Code6 or GitHub7:

1. Focus — The focus of the site on audio and music research is
intended to make researchers who do not think of themselves
as software developers feel that they are among peers, and to
make it easier to locate and obtain relevant code.

2. Public and private projects — Projects can be entirely public,
or private to a group of collaborating researchers; work can
also be started privately and made public later. We believe
that supporting private projects helps users become comfort-
able with the site. At the time of writing 57% of projects
hosted at the site are private, and even for private projects the
average number of members is almost 2.

3. Linking publications with code — Users can associate pub-
lication records with their projects, so that readers can im-
mediately see what publications are related to the code (see
Section 4.3).

The site is also capable of tracking external projects. Re-
searchers who use code hosting or project management facilities
elsewhere can also make use of our site as a nexus for relevant
projects, registering their projects at our site and making it point to
their own hosting.

We believe these features together will encourage researchers to
employ collaborative development early in their work, and to place
themselves in a situation in which the outcomes of their work can be
used in a sustainable way with relatively little extra effort.

4.2.2. User interfaces for version control

Attendees at our Autumn School also reported difficulty during the
course in getting started with the complex user interfaces available
for version control. Nonetheless, version control was amongst the
areas identified subsequently as most valuable.

To address some of the difficulties faced in learning version con-
trol we have developed EasyMercurial,8 an application designed to
be easy to teach to researchers across multiple operating system plat-
forms. This application uses a visual graph representation for change
history, showing explicitly the flow of simultaneous changes by dif-
ferent users and of merge points. EasyMercurial behaves identically
on each supported platform (Windows, Mac OS/X and Linux) in or-
der to simplify training for researchers with disparate platforms.

4http://redmine.org/
5http://sourceforge.net/
6http://code.google.com/
7http://github.com/
8http://easyhg.org/

4.3. Barrier: Lack of incentive for publication

In Section 3 we noted that software and data are typically not recog-
nised as citeable or assessable research outputs. Software also lacks
the publication convention for describing the authorship hierarchy,
making it unclear how an academic should be recognised for their
contribution to a collaborative software work.

Our code site permits users to give publication references for
their code, which are shown on their project’s front page. This not
only increases the likelihood of the code being discovered by users
searching for publications by title, but also ensures that anyone seek-
ing the code will know how to cite its methods in their own publica-
tions, increasing the citation impact of the work.

4.4. Barrier: Platform incompatibilities

We observed in Section 3 that researchers in this field choose to use
many platforms and programming languages to carry out their work.
Although the most common (MATLAB) is used in many signal pro-
cessing groups, it is a commercial platform that is not widely used in
other fields related to audio and music, such as computational musi-
cology or music therapy.

To promote software reuse outside of the immediate signal pro-
cessing community, C4DM has adopted a “plugin” approach. Writ-
ing a plugin allows a working algorithm to be converted directly to
a unit of code which can be used in real applications, without the
need to develop a custom user interface. Developing to a published
specification supported by more than one host program increases the
relevance of the code and therefore the likelihood of its being main-
tained. Code that uses the plugin format of a successful application
is relatively likely to be understood by other developers.

At C4DM we have had success with plugins in standard au-
dio processing formats such as VST9 as well as in writing exter-
nals for modular systems such as Max/MSP or SuperCollider. For
audio analysis methods, in 2006 we developed the Vamp plugin sys-
tem [17] and implemented it using C++ in our visualisation software
Sonic Visualiser [18], a widely-used application that has seen over
200,000 downloads to date, and in our Sonic Annotator batch feature
extractor. The Vamp system has subsequently been used by C4DM
and others with some success for publishing working methods.

5. CASE STUDY: CHORDINO AUTOMATIC CHORD
TRANSCRIPTION

Mauch [19] describes a method for improving automatic recognition
of chords by a prior approximate note transcription step. This is a tra-
ditional publication which appeared without accompanying code or
test data. Although no formal attempt was made initially toward re-
producibility, some independent evaluation was carried out through
the submission of a MATLAB implementation of the method to the
annual MIREX evaluation exchange [20].

Following this publication, the author worked with us to develop
a C++ implementation of the method and turn it into a Vamp plugin for
chord estimation, named Chordino. This code and its revision his-
tory are available through our code site10 and thereby linked with the
associated publication. Although the code has been updated since re-
lease, as a reproducibility aid the plugin includes a mode in which
it uses the same method as that submitted to the MIREX evaluation.

9http://en.wikipedia.org/wiki/Virtual Studio Technology
10http://code.soundsoftware.ac.uk/projects/nnls-chroma



As a consequence, even though this process did not begin until af-
ter the initial publication, a high degree of openness and effective
reusability have been achieved.

6. RECOMMENDATIONS

Research groups wishing to improve software development practice
for their researchers have a number of options which may prove rel-
atively straightforward to carry out.

Aim at easy training targets. In Section 4.1 we observe
that training which may be considered simplistic in the context of
software engineering, such as an introduction to program struc-
ture across multiple source files and functions, may yield tangible
rewards to researchers who are technically minded but lack soft-
ware development experience and fear writing code. We encourage
researchers to make use of the video material from our Autumn
School11 and the related Software Carpentry course material.12

Provide version control software and hosting and encourage
researchers to use it. Version control is also useful when writing
papers in formats such as LATEX, as well as for code. If you are in the
UK, consider using the code site we offer (Section 4.2.1).

The benefits of version control—managing software history and
enabling collaborative development—are sufficiently abstract that it
may be more effective to show than to explain them. Our EasyMer-
curial application (Section 4.2.2) is designed to be an effective teach-
ing tool for visually based tutorial sessions.

Turn code into plugins and seek other ways in which your code
can be used in conjunction with end-user applications that are al-
ready popular (Section 4.4).

Encourage collaborative development. Researchers are rou-
tinely encouraged to work together on conference papers, but col-
laborative software development appears to be the exception rather
than the rule (Section 3). Working together increases the opportu-
nities for learning and creates an environment of confidence about
sharing and reusing code.

7. CONCLUSIONS AND FUTURE WORK

We have identified incremental changes to software development
practice for audio and music researchers, and described the work
we have done in support of them.

We found that many researchers lacked confidence with code,
which we have begun to address with basic software development
training. We found many researchers did not use code management
and collaborative working facilities, so we provided a code hosting
site with a focus on audio and music research software, and easy
version control tools to use with it. We found that published code
may not always be academically recognised or cited, so we have
strengthened the connection between software and citations in our
code site. Finally we found that platform incompatibilities prevent
software being reused, so we propose providing code in the form of
plugins for widely used applications where possible.

In future work, we will need to evaluate the results of these
changes in terms of the proportion of publications with published
and reusable code. We are planning to follow up the 2010 Autumn
School for researchers, possibly using a localised model to take the
school to a number of locations around the UK. And we plan to pro-
duce more training material for version control and our code site, and
evaluate how researchers respond to training with these facilities.

11http://soundsoftware.ac.uk/autumnschool2010video
12http://software-carpentry.org/

8. REFERENCES

[1] J. B. Buckheit and D. L. Donoho, “Wavelab and reproducible
research,” Tech. Rep., Stanford, 1995.

[2] J. Kovacevic, “How to encourage and publish reproducible
research,” in Proc. ICASSP, 2007, vol. 4, pp. 1273–1276.

[3] P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible
research in signal processing—what, why, and how,” IEEE
Sig. Proc. Mag., vol. 26, no. 3, pp. 37–47, 2009.

[4] S. Fomel and J. F. Claerbout, “Guest Editors’ Introduction:
Reproducible Research,” Computing in Sci. Eng., vol. 11, no.
1, pp. 5–7, 2009.

[5] R. Gentleman and D. Temple Lang, “Statistical analyses and
reproducible research,” Journal of Computational and Graph-
ical Statistics, vol. 16, no. 1, pp. 1–23, 2007.

[6] I. Damnjanovic, L. A. Figueira, C. Cannam, and M. D.
Plumbley, “SoundSoftware.ac.uk Survey Report,”
http://code.soundsoftware.ac.uk/documents/17, 2011.

[7] RIN, “Open to All? Case studies of openness in re-
search,” http://www.rin.ac.uk/our-work/data-management-
and-curation/open-science-case-studies, September 2010.

[8] N. Barnes, “Publish your computer code: it is good enough,”
Nature, vol. 467, no. 7317, pp. 753, 2010.

[9] HEFCE, “Assessment framework and guidance on submis-
sions,” http://www.hefce.ac.uk/research/ref/pubs/2011/02 11/,
July 2011.

[10] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen,
D. Pfahl, and G. Wilson, “How do scientists develop and use
scientific software?,” in Proc. SECSE, 2009.

[11] E. D. Scheirer, “Tempo and beat analysis of acoustic musical
signals.,” JASA, vol. 103, no. 1, pp. 588–601, 1998.

[12] M. Goto, “An audio-based real-time beat tracking system for
music with or without drum-sounds,” JNMR, vol. 30, no. 2, pp.
159–171, 2001.

[13] S. Hainsworth, “Beat tracking and musical metre analysis,”
in Sig. Proc. Methods for Music Transcription, A. Klapuri and
M. Davy, Eds., vol. 4, chapter 4, pp. 101–129. Springer, 2006.

[14] Z. Merali, “Computational science: ...Error,” Nature, vol. 467,
no. 7317, pp. 775–777, Oct. 2010.

[15] G. Wilson, “Software Carpentry: Getting scientists to write
better code by making them more productive,” Computing in
Sci. Eng., vol. 8, no. 6, pp. 66–69, 2006.

[16] L. A. Figueira, C. Cannam, and M. D. Plumbley, “Autumn
School for Audio and Music Researchers Survey Report,”
http://code.soundsoftware.ac.uk/documents/19, 2011.

[17] C. Cannam, “The Vamp Audio Analysis Plugin API: A Pro-
grammer’s Guide,” http://vamp-plugins.org/guide.pdf, 2007.

[18] C. Cannam, C. Landone, M. B. Sandler, and J. P. Bello, “The
sonic visualiser: A visualisation platform for semantic descrip-
tors from musical signals,” in Proc. ISMIR, 2006, pp. 324–327.

[19] M. Mauch and S. Dixon, “Approximate note transcription for
the improved identification of difficult chords,” in Proc. ISMIR,
Utrecht, Netherlands, 2010, pp. 135–140.

[20] J. S. Downie, “The music information retrieval evaluation ex-
change (2005–2007): A window into music information re-
trieval research,” AST, vol. 29, no. 4, pp. 247–255, 2008.

This work was supported by EPSRC Grant EP/H043101/1. Mark D. Plumb-
ley is also supported by EPSRC Leadership Fellowship EP/G007144/1.


