
Software Techniques for Good Practice in
Audio and Music Research

Lúıs A. Figueira, Chris Cannam, and Mark D. Plumbley

Queen Mary University of London

Correspondence should be addressed to Lúıs A. Figueira (luis.figueira@eecs.qmul.ac.uk)

ABSTRACT
In this paper we discuss how software development can be improved in the audio and music research commu-
nity by implementing tighter and more effective development feedback loops. We suggest first that researchers
in an academic environment can benefit from the straightforward application of peer code review, even for
ad-hoc research software; and second, that researchers should adopt automated software unit testing from
the start of research projects. We discuss and illustrate how to adopt both code reviews and unit testing
in a research environment. Finally, we observe that the use of a software version control system provides
support for the foundations of both code reviews and automated unit tests. We therefore also propose that
researchers should use version control with all their projects from the earliest stage.

1. INTRODUCTION

The need to develop software to support experi-
mental work is almost universal in audio and music
research. Many published methods comprise both
written material and software implementations. Yet
the software part of the work often goes unpublished
and, even if published, it is not always clear whether
it works correctly. In our earlier survey of the UK
audio and music research community [1], of the 80%
of respondents who said they developed software,
some 40% said they took steps towards reproducibil-
ity, but of those only 35% (i.e. less than 15% of the
total) had actually published any code. In the same
survey, 51% of the respondents who reported devel-
oping software said that their code never left their
own computer. While there are many examples of
active researchers who do publish their software, in-
formal observations suggest that the lack of publi-
cation of research software is widespread in many
areas of audio research.

Research papers typically carry out validation of the
implemented model, evaluating how closely it cor-
responds with observations from reality. But any
requirement to verify the implementation, to estab-
lish that the model described in the publication is
the same as that actually implemented, usually goes
unmet.

We have previously argued [2] that a lack of quality
or confidence in the implementation may be a cause
of failure to publish code. Similarly, studies of data
sharing in other fields have reported a relationship
between willingness to share supporting data and
quality of reporting in the paper [3]. A cause for
lack of confidence with code may be the lack of for-
mal training in software development for researchers
working in academic fields outside computer science.
A recent study [4] found a great deal of variation
in the level of understanding of standard software
engineering concepts by scientists, and found that
in developing and using scientific software, informal
self-study or learning from peers was commonplace.

The audio and music research community is par-
ticularly heterogeneous in terms of academic back-
grounds, with researchers having very different ori-
gins: as well as those from computing and engineer-
ing fields, many researchers in this community come
from backgrounds with no formal training in soft-
ware, such as music, dance or performance [1]. Such
a wide variety of backgrounds poses a big challenge,
given that many of these researchers do not have
the skills or desire to become involved in traditional
software development practice or in publication and
maintenance of code.

In the remainder of this paper we will look into the
software development practices of industry and dis-



Figueira et al. Software Techniques for Good Practice in Audio and Music Research

cuss how some of these can be adopted by the audio
and music research community.

2. FEEDBACK CYCLES

In commercial software development, much of exist-
ing “best practice” consists of trying to shorten or
simplify feedback cycles so that the developer learns
about mistakes as soon as possible. This is made
explicit in incremental software development meth-
ods such as the Agile process [5], where there is a
strong emphasis on individuals and interactions and
use of techniques such as pair programming, contin-
uous integration and unit testing. These techniques
are used to facilitate short development cycles, with
regular and quick software releases, making develop-
ment as flexible as possible.

Even in software companies that do not adopt Agile
procedures, however, there are some techniques very
widely used in commercial development—including
in companies throughout the audio and music soft-
ware industry—that are not widely adopted in
academia. Fig. 1 sketches some of these techniques,
making a hierarchy of feedback mechanisms operat-
ing at different speeds, from most immediate (cycle
a—compiler errors) to least (cycle g—reports from
users of published software).

Fig. 1: Software development feedback cycles in in-
dustry

Researchers are familiar with a similar set of feed-
back processes in the development of written publi-
cations: collaborative review and editing with imme-
diate peer researchers and supervisors, formal peer-

review cycles, and so on. These processes provide
new perspectives which help to produce quality re-
sults more quickly and help to remove potentially
serious errors.

3. FEEDBACK CYCLES IN RESEARCH

The three most typical feedback cycles in research
software development are illustrated in Fig. 2: (a)
compiler errors, or immediate feedback from an in-
teractive development environment; (f) using the
code to run experiments, examining the results, and
judging whether or not they appear to make sense;
and (g) obtaining feedback from users following pub-
lication of the software.

Fig. 2: Common feedback cycles in research soft-
ware development

Compiler feedback, as depicted in Fig. 2, loop a,
is highly immediate, but contains no information
about program correctness other than basic syntax
and type checking.

Manually running and inspecting the output, as rep-
resented in Fig. 2, loop g, is a fundamental part of
any software development procedure, but it is hard
to interpret the feedback it provides. If we don’t
know the expected output of an experiment, we may
be unable to distinguish between genuine experimen-
tal results and artefacts caused by errors in the code.
We also obtain no feedback on aspects of the code
not formally evaluated in the experimental design.

The last loop, represented in Fig. 2, loop g, has its
own limitations. It requires that the researcher pub-
lishes the code, which as noted in Sec. 1 does not

Authors’ preprint submitted to AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 2 of 8



Figueira et al. Software Techniques for Good Practice in Audio and Music Research

always occur—often for reasons relating to the lack
of applicable feedback during development [2]. Sec-
ondly, the speed at which feedback can be obtained
and amount of feedback available are heavily depen-
dent on publication times and uptake among users.

We believe that researchers can take better advan-
tage of other available feedback mechanisms to give
them more confidence in the quality of their code as
quickly as possible. Specifically, we now introduce
two of these techniques—peer code reviews and unit
testing—and explain why and how they may prof-
itably be applied even for small informal projects in
an academic research environment.

4. CODE REVIEWS

A code review (Fig. 1, loop d) simply consists of hav-
ing another person read one’s code before running
any significant experiments with it. This is analo-
gous to copy-editing a paper publication.

4.1. Code reviews can be quick and informal

Studies have shown that the first hour of code review
is the most productive. In [6] and [7], Dunsmore et al
found that defects were found at a roughly constant
rate through the first 60 minutes of inspection, then
tailing off so that no further defects were discovered
after the first 90 minutes. This result suggests that
code reviews need not be too great a burden on time.

In [7], the same authors compared three methods of
formal code review, which they identified as “check-
list”, “systematic” (or “abstraction”) and “use-case”
methods. The checklist method requires preparing
and following a list of common sources of error in the
language under inspection; the systematic method
calls for the reviewer to reverse-engineer a specifica-
tion for each function from its source code; and the
use-case method examines the context in which code
is used by tracing the flow of data, line by line, from
likely inputs to expected outputs of each function.

The use-case method formalises the intuitive reading
approach taken by a peer code reviewer familiar with
the problem domain but not with the implementa-
tion: working from the likely inputs to each function,
toward the expected outputs. Academic peers who
are familiar with the field in which a program oper-
ates can apply this method informally by considering

input data typical of the domain and tracking how
it is transformed through the lines of code within
a function. Although the use-case method did not
perform as well as the checklist method in the Dun-
smore et al study [7], the difference was small and
we would suggest it as a good starting point for an
informal code review process to be applied within a
research group.

4.2. Reviewing code contributes to learning

Effective code reviews require some ability to read
code. Reviewers reporting a high level of code com-
prehension have been shown to find more defects [8],
and training developers in “how to read code” makes
a substantial difference [9] to the number of errors
found during code review.

This suggests that learning to read code is a valu-
able part of learning to write and debug software,
a principle supported by [10] and others. Formal
training in code comprehension may be of benefit to
the researcher-developer who wishes to review code,
but in addition to any formal training, the exercise
of code review is itself a learning opportunity.

Although the studies cited here show improvements
in review performance due to improved code com-
prehension and review methods, a high level of com-
prehension is not a prerequisite for taking part in
reviews: in [8] it is noted that some reviewers who
did not fully understand the code nonetheless found
around half of the defects in it.

4.3. Reviews are effective

In a well known article, Fagan [11] shows that code
reviews can remove 60−90% of errors before the first
test is run [12]. Comparative studies of code re-
view techniques and reviewers support the proposi-
tion that code review is generally effective, showing
for example that “median” reviewers found 60−70%
of defects [8] or that reviews exposed all but one
defect in the sample code [7].

4.4. Recommendations

We therefore suggest code reviews as appropriate for
academic software development for three reasons:

1. Code reviews can be carried out quickly and
informally in a peer setting such as a research
environment;

Authors’ preprint submitted to AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 3 of 8



Figueira et al. Software Techniques for Good Practice in Audio and Music Research

2. Carrying out reviews gives the reviewer and au-
thor practice in reading code and in writing
code that can be read, both of which are valu-
able in improving software development ability;

3. Code reviews are more effective at finding errors
than any other commonly used technique.

5. UNIT TESTING

Unit testing is a second technique, widely used in
non-academic settings, for providing software devel-
opers with feedback (Fig. 1, loop c).

A unit test is a means of automating and repeating
tests of the individual parts of a program. It consists
of code that calls a function in the program, gives
it some input, and tells the developer whether it re-
turns the expected result. If all non-trivial functions
have tests, and if those tests provide a reasonable
coverage of both likely inputs and edge cases, this
provides a baseline assurance that the components
of a program work as expected, even if the program
as a whole is complex or changing.

5.1. Testing research software can be hard

Much research software is written to perform novel
work: potentially complex experiments with previ-
ously unknown outputs. How do we test such soft-
ware, given that the authors are not able to predict
its output?

Unit testing goes some way toward helping with this.
For code to be testable through unit tests it must be
written in sufficiently small functions, with clearly
defined inputs and outputs, for each to be tested
mechanically. At this level it should indeed be pos-
sible to calculate the expected output of a function,
given sufficiently simple choices of input. Further,
code written in this way is easier to read and reuse.

Unit tests written during software development also
provide early sanity-checking for code. A program to
read data from a file and calculate a result might fail,
not only because the basic algorithm is wrong, but
because the input is read wrongly or the code fails
to deal with unusual cases such as short or empty
datasets or missing values.

Although unit testing cannot guarantee that a pro-
gram produces the correct results, ensuring that it

is built from correct components is a useful step to-
ward ensuring it actually implements the method
described in the publication.

5.2. Unit tests help avoid regressions

In software development, a regression is an error
introduced accidentally while modifying software—
something which used to work but has since become
broken, such as a new bug introduced while fixing
something else.

Regressions are common: in [13] Robert Glass iden-
tified 8.5% of errors identified after delivery of
software from a substantial commercial aerospace
project as regressions. Regressions may also be dan-
gerous, because they change behaviour that may be
relied upon or that has been already published; and
regressions are dispiriting, because they are exam-
ples of unambiguously wrong behaviour that suggest
the developer is making negative progress.

Although regression testing is especially important
when working in a team, such errors also occur in
solo projects, and regressions can also arise from fac-
tors outside a developer’s own control such as plat-
form dependencies or changes between versions of a
third-party library.

Automated tests are vital in avoiding regressions,
because regression testing is simply too difficult and
tedious to perform manually. It would require test-
ing every use case by hand after every code change,
which is not feasible. Unit tests can be run quickly
after every build, and can identify with some preci-
sion the part of the code that has been broken by a
change.

5.3. Test-driven development may be a useful
analytical tool

A fundamental discussion around unit testing con-
cerns when to write the tests.

Some developers, e.g. [14], advocate test-driven (or
test-first) development, a process in which the unit
tests are written before the rest of the code. The
act of writing tests constructs a contract which the
implementation is then written to satisfy. In princi-
ple, this ensures the code will be correct as it is first
written.

Erdogmus et al. [15] found that those developers who
adopted a test-driven strategy wrote more tests; that

Authors’ preprint submitted to AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 4 of 8



Figueira et al. Software Techniques for Good Practice in Audio and Music Research

the developers who wrote more tests tended to be
more productive; and that the quality of software
produced was roughly proportional to the number of
tests provided. A further survey [16] found that the
quality of tests in a test-driven approach was often
higher than that of those written after the implemen-
tation. However, we are unaware of any studies that
show a direct link between the test-driven approach
and higher quality or productivity, controlling for
other factors.

Nonetheless, what makes test-driven development
interesting for research software is the opportunity
it affords to approach a problem from the opposite
perspective to that usually used when simply writ-
ing code. Rather than begin by considering how
to implement a solution and then think about how
to test whether it works, the test-driven approach
begins by considering what would be necessary to
establish whether a solution was correct or not, be-
fore filling in the implementation. We believe this
approach may be a mental tool worth considering
when approaching hard-to-implement problems, re-
gardless of whether it ultimately produces better
code or not.

5.4. Recommendations

We propose unit testing as part of a practical,
research-driven development environment for the
following reasons:

1. Research software can be hard to perform high-
level testing for: unit tests are a relatively easy
way to obtain any assurance of correctness;

2. Unit testing is a good way to defend against
regressions, a common class of error which can
be hard to discover by manual testing;

3. A form of unit test development, test-driven de-
velopment, can provide an additional analytical
perspective when solving difficult problems.

6. VERSION CONTROL

A version control system is a tool that tracks the his-
tory of all files in a software project, logging changes
and different versions, thus allowing researchers to
easily compare different versions of the same file.
Version control systems also help developers to share

and merge changes, making projects easier to man-
age when several researchers are working together
on them. Commonly used version control systems
include git1, Mercurial2, and Subversion3.

Besides making general management of code easier
and more pleasant, a version control system provides
a necessary foundation for effective code reviews and
unit testing.

In allowing its user to see the differences between
respective revisions of a project, a version control
system makes it possible to isolate a set of changes
and be sure that a code review is covering every-
thing that has been changed in a particular piece of
work. It also provides a mechanism for sharing code
between developers, such that they can be sure they
are looking at the same version of the same software.

In the context of unit testing, especially for regres-
sion testing, a version control system provides the
necessary support to compare two versions of code
and identify the source of a change in behaviour.

7. RECOMMENDED ACTIONS FOR A RE-
SEARCH GROUP

7.1. Code reviews

As noted above in Sec. 4, in a research environment
we advocate the adoption of an informal style of
“use-case” code review. Here the reviewer follows
data paths through the code, from an imagined in-
put to the result output, with the original developer
available to explain what each step is for if neces-
sary. This technique can be conducted without much
preparation, because the reviewer does not need an
in-depth knowledge of the specifics of the implemen-
tation and there is no requirement to make checklists
or other aids prior to the review process.

Wilson et al [17] propose the use of “pre-merge” code
reviews, in which reviews are a requirement for code
to be included into a shared repository. When using
a modern distributed version control system, this
could be set up either by committing to a user’s
own branch and then merging to a main branch after
review, or else by having the developer commit only
on their local machine and get the code reviewed

1http://git-scm.com/
2http://mercurial.selenic.com/
3http://subversion.apache.org/

Authors’ preprint submitted to AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 5 of 8



Figueira et al. Software Techniques for Good Practice in Audio and Music Research

in person by another researcher before pushing to
a central repository. In either case, it is important
to review before performing experiments using the
code.

7.2. Unit testing

Unit tests should be small and as simple as possible.
The aim is to exercise the code in unexpected ways,
focusing on tricky small cases rather than easy large
ones. Studies show that areas of code where bugs
are found are more likely to be fragile in general
[18, 19] and bugs that have already been found are
relatively likely to reappear as regressions, so more
time should be focused on testing areas that have
already proven problematic or where bugs have been
found in “finished” code.

Be careful to avoid exact comparisons when test-
ing outputs from inexact calculations or those using
floating-point arithmetic. The error margin for a
calculation is part of the test, just as the expected
result is.

Because it can be hard to get started in writing
unit tests, we propose adopting the simplest avail-
able unit test framework. In some cases, it may
even be easiest to write unit tests without a frame-
work: call a function; complain if the result is wrong.
More usually the simplest method will be to adopt a
standard test framework, such as Nose for Python4.
Other authors [17] advise using a test framework for
all unit testing.

7.3. Version control

A version control system should be used from the
very beginning of any project, regardless of its com-
plexity. Recent reports from other fields show en-
couraging trends in adoption of such systems in an
academic setting [20]. In general, the right system
to choose is whichever is available in the research
group or in use by peer researchers. In the absence
of a local standard, we recommend the use of a mod-
ern distributed version control system such as git or
Mercurial.

Similar guidelines apply to the choice of hosting ser-
vices. Several free solutions are available on-line,
such as GitHub5 for git, or Bitbucket6 for both git

4https://nose.readthedocs.org/en/latest/
5https://github.com/
6https://bitbucket.org/

and Mercurial projects with good support for pri-
vate work. In addition to these generic hosting sites,
there are subject-specific sites such as the Sound-
Software project site7 for UK-based researchers in
the audio and music field.

8. CONCLUSIONS

Throughout this paper we argue that code reviews
and unit testing are valuable techniques that can
and should be adopted in academic contexts. We
introduce these techniques in the context of a set
of feedback loops that give the researcher-developer
timely information about problems in their code.

We have also given some advice and pointers to how
to adopt such techniques in a research environment,
such as:

• apply an informal style of “use-case” code re-
view technique, calling on peer researchers to
review code before using it in substantial ex-
periments;

• adopt the simplest available unit testing regime,
keep unit tests small and concise, and apply a
standard test framework for unit tests on larger
pieces of code;

• support these techniques with the use of a ver-
sion control system from early in a project.

Techniques such as these rely on becoming comfort-
able with the idea that others will be looking at one’s
research code. We believe that this is an important
step, and one that makes documentation and unit
testing easier, code reviews possible, and publica-
tion and peer review of software less scary.

As part of our ongoing UK-based SoundSoftware
project8, we have developed several materials to add
to this subject, such as handouts with practical guid-
ance, video tutorials, and slides. You can freely ac-
cess these on the project’s website9.

9. ACKNOWLEDGMENTS
This work was supported by EPSRC Grant
EP/H043101/1. Prof. Mark D. Plumbley is

7http://code.soundsoftware.ac.uk/
8http://soundsoftware.ac.uk
9http://soundsoftware.ac.uk/resources

Authors’ preprint submitted to AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 6 of 8



Figueira et al. Software Techniques for Good Practice in Audio and Music Research

also supported by EPSRC Leadership Fellowship
EP/G007144/1.

10. REFERENCES

[1] I. Damnjanovic, L. A. Figueira,
C. Cannam, and M. D. Plumbley,
“SoundSoftware.ac.uk Survey Report.”
http://code.soundsoftware.ac.uk/documents/17,
2011.

[2] C. Cannam, L. A. Figueira, and M. D. Plumb-
ley, “Sound software: Towards software reuse in
audio and music research,” in Proceedings of the
IEEE 2012 International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP
2012), pp. 2745–2748, IEEE Signal Processing
Society, March 2012.

[3] J. M. Wicherts, M. Bakker, and D. Molenaar,
“Willingness to share research data is related
to the strength of the evidence and the quality
of reporting of statistical results,” PLoS ONE,
vol. 6, p. e26828, 11 2011.

[4] J. E. Hannay, C. MacLeod, J. Singer, H. P.
Langtangen, D. Pfahl, and G. Wilson, “How do
scientists develop and use scientific software?,”
in Proceedings of the 2009 ICSE Workshop on
Software Engineering for Computational Sci-
ence and Engineering, SECSE ’09, (Washing-
ton, DC, USA), pp. 1–8, IEEE Computer Soci-
ety, 2009.

[5] K. Beck, M. Beedle, A. van Bennekum,
A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,
J. Kern, B. Marick, R. C. Martin, S. Mellor,
K. Schwaber, J. Sutherland, and D. Thomas,
“Manifesto for Agile Software Development,”
2001.

[6] A. Dunsmore, M. Roper, and M. Wood,
“Object-oriented inspection in the face of de-
localisation,” in Proceedings of the 22nd in-
ternational conference on Software engineering,
pp. 467–476, ACM, 2000.

[7] A. Dunsmore, M. Roper, and M. Wood, “Prac-
tical code inspection techniques for object-
oriented systems: An experimental compari-

son,” IEEE Software, vol. 20, pp. 21–29, 7–8
2003.

[8] A. Dunsmore, M. Roper, and M. Wood, “The
role of comprehension in software inspection,”
Journal of Systems and Software, vol. 52,
pp. 121–129, 2000.

[9] S. Rifkin and L. Deimel, “Applying program
comprehension techniques to improve software
inspections,” in In Proceedings of the 19th An-
nual NASA Software Engineering Laboratory
Workshop, pp. 3–8, 1994.

[10] L. E. Deimel and J. F. Naveda, “Reading com-
puter programs: Instructor’s guide and exer-
cises,” Tech. Rep. CMU/SEI-90-EM-3, Soft-
ware Engineering Institute, Carnegie Mellon
University, August 1990.

[11] M. E. Fagan, “Design and code inspections to
reduce errors in program development,” IBM
Systems Journal, vol. 15, no. 3, pp. 182–211,
1976.

[12] R. L. Glass, “Inspections - some surprising find-
ings,” Commun. ACM, vol. 42, no. 4, pp. 17–19,
1999.

[13] R. L. Glass, “Persistent software errors,” IEEE
Trans. Software Eng., vol. 7, no. 2, pp. 162–168,
1981.

[14] K. Beck, Test-Driven Development By Exam-
ple, vol. 2 of The Addison-Wesley Signature Se-
ries. Addison-Wesley, 2003.

[15] H. Erdogmus, M. Morisio, and M. Torchiano,
“On the effectiveness of the test-first approach
to programming,” IEEE Transactions on Soft-
ware Engineering, vol. 31, pp. 226–237, 2005.

[16] B. Turhan, L. Layman, M. Diep, F. Shull, and
H. Erdogmus, “How effective is test driven de-
velopment?,” in Making Software: What Really
Works, and Why We Believe It (G. Wilson and
A. Orham, eds.), OReilly Press, 2010.

[17] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C.
Hong, M. Davis, R. T. Guy, S. H. Had-
dock, K. Huff, I. M. Mitchell, M. D. Plumb-
ley, B. Waugh, E. P. White, and P. Wil-

Authors’ preprint submitted to AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 7 of 8



Figueira et al. Software Techniques for Good Practice in Audio and Music Research

son, “Best practices for scientific comput-
ing,” Computing Research Repository (CoRR),
vol. abs/1210.0530, 2012.

[18] A. Endres, “An analysis of errors and their
causes in system programs,” in Proceedings of
the international conference on Reliable soft-
ware, (New York, NY, USA), pp. 327–336,
ACM, 1975.

[19] B. W. Boehm and V. R. Basili, “Software defect
reduction top 10 list,” IEEE Computer, vol. 34,
no. 1, pp. 135–137, 2001.

[20] K. Ram, “git can facilitate greater reproducibil-
ity and increased transparency in science,”
Source Code for Biology and Medicine, 2013.

Authors’ preprint submitted to AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 8 of 8


