
SOFTWARE TECHNIQUES FOR GOOD PRACTICE
IN AUDIO AND MUSIC RESEARCH

Eases code sharing between
developers, such that they can be sure
they are looking at the same version
of the same software

Provides the necessary support to
compare two versions of code and
identify the source of a change in
behaviour

Apply an informal style of "use-case" code review technique

• peers should review the code before important experiments
• use "pre-merge" code reviews when working with shared repositories

Adopt the simplest available unit testing regime

• keep unit tests smal l and concise
• use a standard test framework for unit tests on larger programs

Use a version control system

• should be used from the beginning of any software project
• fundamental to support both code reviews and unit testing

Read our paper!

Paper 8872

Luís A. Figueira, Chris Cannam and Mark D. Plumbley
Queen Mary University of London

The importance of feedback

• al lows developers to learn
about software mistakes

Commercial best practice

• short/simple cycles
• find mistakes quickly

Frequently used techniques

• pair programming, continuous
integration, unit testing

FEEDBACK CYCLES IN SOFTWARE

Good way to defend against regressions,
which are hard to discover simply by
manual testing

Test driven development (TDD) can
provide an additional analytical
perspective when solving difficult
problems [Erdogmus et al , 2005]

http://soundsoftware.ac.uk/aes-rome2013-paper

TYPICAL RESEARCH WORKFLOWS
Compiler/IDE feedback

• no information on program
correctness

Manual test runs

• difficult to distinguish genuine
results from bugs

Publication/User feedback

• can take a long time
• requires code/data publ ication

CODE REVIEWS UNIT TESTING

Can be carried out quickly and
informally in a peer setting
such as a research lab
[Dunsmore et al, 2000]

Reading code and writing
readable code are valuable
in developing software
development abil ity [Deimel et
al , 1990]

VERSION CONTROL RESEARCH GROUP RECOMMENDATIONS

In this paper we discuss how software development can be improved in the audio and music research community by implementing
tighter and more effective development feedback loops. We suggest first that researchers in an academic environment can benefit from
the straightforward application of peer code review, even for ad-hoc research software; and second, that researchers should adopt
automated software unit testing from the start of research projects. We discuss and illustrate how to adopt both code reviews and unit
testing in a research environment. Finally, we observe that the use of a software version control system provides support for the
foundations of both code reviews and automated unit tests. We therefore also propose that researchers should use version control with
all their projects from the earliest stage.

Complete article, bibl iographic references
and further information available at:

More effective at finding errors than any other commonly used
technique [Fagan, 1976]

Relatively easy way to obtain any assurance of correctness

General management of code becomes easier




