
SKETCH WRITE TESTS RUN TESTS FILL IN CODE
framer.py:
def get_n_frames(n, hop):

"""Return the number ofnon­overlapping framesof length hop we canget from n samples."""
return 0

test_framer.py:
import framer as fr;
def test_get_n_frames():assert fr.get_n_frames(4,2) == 2assert fr.get_n_frames(5,2) == 3assert fr.get_n_frames(6,1) == 6assert fr.get_n_frames(0,5) == 0

console:
$ nosetests=============================FAIL:test_framer.test_get_n_frames­­­­­­­­­­­­­­­­­­­­­­­­­­­­­assert fr.get_n_frames(4,2) == 2AssertionError

framer.py:
def get_n_frames(n, hop):

"""Return the number ofnon­overlapping framesof length hop we canget from n samples."""
f = int(np.ceil(n/float(hop)))return f

HOW CAN TEST-DRIVEN DEVELOPMENT
FIT WITH RESEARCH SOFTWARE?

Video from ISMIR 2012 tutorial

http://bit. ly/UrPFGF
Real-world C++ audio analysis example

http://bit. ly/Z4XpWE

WHAT IS TEST-DRIVEN DEVELOPMENT?

LOW-LEVEL STUFF EXPERIMENTAL STUFF

HOW DO YOU DO THAT WITH RESEARCH CODE?

When the task is clear enough that you can work out
the answers “by hand” for simple inputs:

• Use simple synthetic test data, not real-world data
• Include trivial or nul l inputs
• Test any uti l ity code l ike framing, fi le I/O
• What's the simplest input that makes it fai l?

Try to arrange work into units smal l enough to be
reasoned about this way

Not easy to work out what results are expected?

• You're testing the implementation—not the
qual ity of the method it uses (that's for the paper)

• Seek “minimum valid behaviour” for method
• Existing methods, no matter how bad, should
pass your tests if implemented correctly

Tests provide the basic code safety net, enabl ing wild
experimental changes without screwing up

Code written during that tutorial

http://bit. ly/SLfMuD
More handouts and guides

http://bit. ly/SLfUuc

WATCH READ




