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The Audio Degradation Toolbox
and its Application to Robustness Evaluation
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Queen Mary University of London, Centre for Digital Music

Example: the ‘Radio Broadcast’ degradation

Radio Broadcast

Dynamic Range Compr.

Speedup

audio

ground truth
timestamps

transformed 
ground truth

transformed

audio

Any degradation can have two inputs: 
audio and ground truth timestamps.

Both inputs are are transformed by the 
individual degradation units that make 
up the degradation.

In this example, the Radio Broadcast 
degradation applies Dynamic Range 
Compression, which imposes a delay on 
both audio and time stamps, and 
Speedup, which speeds up the audio 
and timestamps.

degradation unit

degradation unit

Open source code and 
examples available on 
SoundSoftware
http://code.soundsoftware.ac.uk/projects/
audio-degradation-toolbox

degradation

In Matlab

[audio_out, transformed_timestamps] = applyDegradation(‘radioBroadcast’, audio_in, samplingFreq, timestamps);

Many degradations, such as Radio 
Broadcast are already defined in the 
ADT, so applying them only takes one 
line of code using the applyDegradation 
function.

If provided only with either audio or 
timestamps, applyDegradation still 
works and returns the respective output.

Abstract
We introduce the Audio Degradation Toolbox (ADT) for the controlled degradation 
of audio signals, and propose its usage as a means of evaluating and comparing 
the robustness of audio processing algorithms.

Music recordings encountered in practical applications are subject to varied, 
sometimes unpredictable degradation. For example, audio is degraded by low-
quality microphones, noisy recording environments, MP3 compression, dynamic 
compression in broadcasting or vinyl decay.

In spite of this, no standard software for the degradation of audio exists, and music 
processing methods are usually evaluated against clean data.

The ADT fills this gap by providing Matlab scripts that emulate a wide range of 
degradation types. We describe 14 degradation units, and how they can be chained 
to create more complex, `real-world' degradations. The ADT also provides 
functionality to adjust existing ground-truth, correcting for temporal distortions 
introduced by degradation.

Using four different music informatics tasks, we show that performance strongly 
depends on the combination of method and degradation applied. We demonstrate 
that specific degradations can reduce or even reverse the performance difference 
between two competing methods.

ADT source code, sounds, impulse responses and definitions are freely available 
for download.

Why an Audio Degradation Toolbox?

• evaluation is essential to improving 
audio processing methods

• testing on clean data sets is good, 
but signal processing methods 
should be tested on realistic data 
because
• real-world data sets are of 

unpredictable quality
• real-world data sets are often 

bad quality
• no tool for systematically producing 

degraded audio existed
• using degraded audio meant re-

inventing the wheel, hence 
inconsistent across papers

• degrading audio required a lot 
of extra work, unattractive to 
researchers with little time

ADT Features / Implementation

• in Matlab, source code here:
http://code.soundsoftware.ac.uk/projects/
audio-degradation-toolbox

• degrades audio and optionally 
transforms ground truth timestamps to 
match the degraded audio

• two levels
• 14 degradation units (see box 

below)
• limitless degradations 

(chains of units, see example above)
• comes with pre-defined complex 

degradations
• comes with example batch processing 

scripts

Data included in the ADT
• sounds included: 

pub sound environment, vinyl crackle
• impulse responses: large halls, 

microphone and speaker of a 
smartphone, vinyl player

Aims of the ADT

• provide easy-to-use tool to degrade 
audio in many different ways

• support evaluation by providing 
means to transform ground truth 
timestamps along with the audio

• facilitate comparison of evaluation 
results by providing well-defined 
degradations

➡ contribute to more robust signal 
processing methods

Degradation Units

Degradations Used in Paper

Add Noise

Add Sound

Attenuation

Aliasing

Clipping

Delay

Dynamic Range Compr.

Apply Impulse Response

High-pass filter

Low-pass filter

MP3 Compression

Saturation

Speedup

Wow Resampling

Live Recording

Vinyl Recording

Smartphone Recording

Radio Broadcast

Smartphone Playback

Strong MP3 Compression

Results — Applying the ADT

• evaluation of 4 different MIR tasks
• audio fingerprinting 

(EchoNest)
• score-to-audio alignment 

(Ewert’s method)
• beat-tracking 

(Davies vs. BeatRoot)
• chord detection 

(HPA vs. Chordino)
• applied 6 degradations simulating 

‘real-world’ scenarios (see box)
➡ each task susceptible to specific 

degradations
➡ methods for the same task 

significantly differ in their robustness
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Figure 4: Score-to-Audio alignment accuracy under Real
World Degradations. The boxes indicate the 1st, 2nd (me-
dian) and 3rd quartiles, the whiskers extend to ‘the most
extreme data point which is no more than 1.5 times the
interquartile range’ (R software [19]).

vided by the company EchoNest. A user can compute an au-
dio fingerprint using a dedicated program (ENMFP method)
and query the EchoNest database for a corresponding identi-
fication number, artist and track name. If the system cannot
identify a recording, that information is also returned.

We queried the database using 100 original rock and pop
songs 5 taken from commercial CDs as well as degraded
versions using the Real World Degradations defined in Sec-
tion 2.2. The returned metadata was manually validated.
The design goals for the EchoNest Audio ID service are
clearly reflected in the results in Table 2: all 100 original
tracks are correctly identified, as were all 100 files with
strong MP3 compression. In contrast, all other degradations
led to a clear failure with at most five recordings identified
correctly, and low precision with up to seven recordings
identified incorrectly. 6 However, as illustrated in Figure 3,
an additional test showed that the system is reasonably ro-
bust against added pink noise up to a signal-to-noise ratio
(SNR) of 10dB, for which 80 pieces were still correctly
recognised (Figure 3). The poor real-world results are not
surprising, since the service is supposed to discriminate
between versions of the same song, not to detect similar
songs. By contrast, the music informatics tasks below are
concerned with the extraction of musical attributes that
should persist even in degraded audio.

3.2 Score-to-Audio Alignment

Given a score and an audio recording for a piece of music,
the aim of score-to-audio alignment is to find, for every posi-
tion in the score, the corresponding position in the recording.
In contrast to the audio ID task, which assumes a particular
recording, the task is meant to work on any rendition or
recording of the same musical work, and hence we expect a
higher robustness against our real-world degradations. We
use all 50 pieces from the Saarland Music Data [16], which
contains audio recordings and corresponding MIDI files,
both recorded using a Yamaha Disklavier. Our experimental

5 A list of files is available on the project’s website.
6 In all cases, the songs are still easily recognisable to human listeners.
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Figure 5: Comparison of beat-tracking performance under
Real World Degradations.

setup is similar to the one described in [8]: the MIDI files
are temporally distorted by randomly changing their tempo
in 10-second intervals by up to 50%, faster or slower. We
compute the alignment between the distorted MIDI files and
the original audio recordings using the method described
in [8], which combines chroma features with onset features.
To measure the alignment accuracy, we computed for each
recording the percentage of notes with an alignment error
of less than 50ms for the onset position. The distribution of
these values over all files is shown in the form of box-and-
whisker plots in Figure 4.

This score-to-audio method is more robust than the
EchoNest audio ID retrieval. The median over all files
remains greater than 90% for all degradations, with two
exceptions: Live and Smartphone Playback. Here, it is in-
teresting to investigate the underlying reasons. The method
employs a relatively simple onset detector to refine the
alignment. The room IR used in the Live setting contains
several early reflections, which generates several closely
located ‘copies’ of onsets. These can easily be confused
with the original onset. In the Phone Playback scenario,
the significantly lower performance might be a result of ap-
plying the impulse response for the phone’s speaker, which
strongly attenuates all frequencies below 500 Hz including
all fundamental frequencies up to B4. This leads to sub-
stantial differences between the observed audio and audio
expected based on the score.

3.3 Beat-tracking

The aim of beat-tracking is to automatically find the time-
stamps of all beats in a piece of music. We compare two
beat-trackers: BeatRoot 7 [5] and Davies [4] (QM Vamp
Plugins implementation). BeatRoot first estimates note on-
set times, and forms a large number of tempo and beat
hypotheses based on these onsets. A multiple-agent archi-
tecture is then used to determine the final beat estimates
from the hypotheses. The Davies beat-tracker does not
directly work on onsets but uses a continuous mid-level
representation of onset salience, on which a comb filter is
used to calculate the salience of different beat periods and
beat alignments. Dynamic programming is used to retrieve

7
http://www.eecs.qmul.ac.uk/

˜

simond/beatroot, vers. 0.5.8

Score-to-audio alignment 
performance

Ewert’s score-to-audio 
alignment requires clear bass 
frequencies and onsets. 

The former are compromised 
by the Smartphone Playback 
degradation (phone speaker is 
a high-pass filter)), and the 
latter by the Live Recording 
degradation (onsets and their 
echoes get confused).

function degr_cfg = demoDegradation()

degr_cfg(1).methodname = ’degradationUnit_1’;

degr_cfg(1).parameter.someParam1 = 3;

degr_cfg(2).methodname = ’degradationUnit_2’;

degr_cfg(2).parameter.someParam2 = 4;

a) Specifying a degradation.

audio_out = applyDegradation(

’demoDegradation’,audio,samplingFreq);

b) Applying a degradation to audio data.

Figure 2: Demo degradation: specification and application.

Speed-up (W). The signal is resampled at a specified sam-
pling rate but returned using the original sampling rate,
which results in a speed-up (or slow-down). Timestamps
are adjusted accordingly.
Wow Resampling (W). Similar to Speed-up, but the re-
sampling frequency is time-dependent: it oscillates around
the original sampling rate at a specified frequency and am-
plitude, imitating non-constant speed in record players or
tape machines. Timestamps are non-linearly warped to
correspond to the output audio.

These degradation units implement audio and ground-
truth transformation and thus form the building blocks for
higher-level degradations, the subject of the next subsection.

2.2 Degradations

A degradation is a chain of degradation units with fixed
parameters. The purpose of daisy-chaining degradation
units is to allow the creation of more complex degrada-
tions than would be possible by using the degradation units
alone. A degradation is defined in a Matlab function that
acts as a configuration file describing the order and pa-
rameters of all degradation units used. An example is
given in Figure 2a: the demo degradation specifies a first
degradation unit degradationUnit 1 with the parame-
ter someParam1 set to 3, and a second degradation unit
degradationUnit 2 with the parameter someParam2 set
to 4. In this way, the audio processing chain can be precisely
specified. Any degradation thus defined can be applied to
audio using the Matlab function applyDegradation pro-
vided by the ADT, see Figure 2b. Based on the degradation
name, given as the first argument, the function retrieves
the degradation definition in the struct array degr cfg and
cascades the degradation units in the specified order. Op-
tionally, timestamp data can be supplied, which is also
sequentially transformed to match the output audio, which
is useful to make ground-truth usable on the degraded au-
dio (see Section 2.1). The ADT comes with a range of
pre-defined degradations. For the purpose of this paper we
focus on the subset of six ‘Real World Degradations’ that
cover a variety of scenarios (more precise definitions come
with the ADT source code).

Live Recording. Based on two degradation units: 1. Apply
Impulse Response, using an IR of a large room (‘Great Hall’,
taken from [20] and included in the ADT), 2. Add Noise:
adding light pink noise.
Radio Broadcast. Based on two degradation units: 1. Dy-
namic Range Compression at a medium level to emulate

correct incorrect not identified

Original 100 0 0
Live 0 0 100
Radio 3 3 94
PhonePlay 0 1 99
PhoneRec 5 7 88
MP3 100 0 0
Vinyl 4 0 96

Table 2: EchoNest audio ID results for 100 test songs.
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Figure 3: EchoNest audio ID results with pink noise.

the high loudness characteristic of many radio stations,
2. Speed-up, by 2%, which is commonly applied to mu-
sic in commercial radio stations to shorten the music to
create more advertisement time.
Smartphone Playback. Based on two degradation units
simulating a user playing back audio on a smartphone:
1. Apply Impulse Response, using the IR of a smartphone
speaker (‘Google Nexus One’, Table 1a), which has a high-
pass characteristic and a cutoff at ⇡ 500Hz. 2. Add Noise,
adding light pink noise.
Smartphone Recording. Based on four degradation units,
simulating a user holding a phone in front of a speaker:
1. Apply Impulse Response, using the IR of a smartphone
microphone (‘Google Nexus One’, Table 1a), 2. Dynamic
Range Compression, to simulate the phone’s auto-gain,
3. Clipping, 3% of samples, 4. Add Noise, adding medium
pink noise.
Strong MP3 Compression. Based on one degradation
unit: MP3 Compression at a constant bit rate of 64 kbps.
Vinyl. Based on four degradation units: 1. Apply Impulse
Response, using a typical record player impulse response
(Table 1a), 2. Add Sound, adding record player crackle
(Table 1b), 3. Wow Resample, imitating wow-and-flutter,
with the wow-frequency set to 33 rpm (speed of Long Play
records), 4. Add Noise, adding light pink noise.

3. APPLICATIONS

In order to illustrate the insights that can be gained by using
the ADT we evaluated several methods for standard music
informatics tasks on suitable audio data. The results and
brief discussions are given below.

3.1 Audio Identification Service

As a proof of concept we used the free web-based audio
identification (audio ID) service from the Song API 4 pro-

4
http://developer.echonest.com/docs/v4/song.html

Audio Fingerprinting

EchoNest’s Audio ID is 
extremely accurate on the 
original recording and strong 
MP3 compression, but 
essentially fails for all other 
degradations.
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Figure 4: Score-to-Audio alignment accuracy under Real
World Degradations. The boxes indicate the 1st, 2nd (me-
dian) and 3rd quartiles, the whiskers extend to ‘the most
extreme data point which is no more than 1.5 times the
interquartile range’ (R software [19]).

vided by the company EchoNest. A user can compute an au-
dio fingerprint using a dedicated program (ENMFP method)
and query the EchoNest database for a corresponding identi-
fication number, artist and track name. If the system cannot
identify a recording, that information is also returned.

We queried the database using 100 original rock and pop
songs 5 taken from commercial CDs as well as degraded
versions using the Real World Degradations defined in Sec-
tion 2.2. The returned metadata was manually validated.
The design goals for the EchoNest Audio ID service are
clearly reflected in the results in Table 2: all 100 original
tracks are correctly identified, as were all 100 files with
strong MP3 compression. In contrast, all other degradations
led to a clear failure with at most five recordings identified
correctly, and low precision with up to seven recordings
identified incorrectly. 6 However, as illustrated in Figure 3,
an additional test showed that the system is reasonably ro-
bust against added pink noise up to a signal-to-noise ratio
(SNR) of 10dB, for which 80 pieces were still correctly
recognised (Figure 3). The poor real-world results are not
surprising, since the service is supposed to discriminate
between versions of the same song, not to detect similar
songs. By contrast, the music informatics tasks below are
concerned with the extraction of musical attributes that
should persist even in degraded audio.

3.2 Score-to-Audio Alignment

Given a score and an audio recording for a piece of music,
the aim of score-to-audio alignment is to find, for every posi-
tion in the score, the corresponding position in the recording.
In contrast to the audio ID task, which assumes a particular
recording, the task is meant to work on any rendition or
recording of the same musical work, and hence we expect a
higher robustness against our real-world degradations. We
use all 50 pieces from the Saarland Music Data [16], which
contains audio recordings and corresponding MIDI files,
both recorded using a Yamaha Disklavier. Our experimental

5 A list of files is available on the project’s website.
6 In all cases, the songs are still easily recognisable to human listeners.
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Figure 5: Comparison of beat-tracking performance under
Real World Degradations.

setup is similar to the one described in [8]: the MIDI files
are temporally distorted by randomly changing their tempo
in 10-second intervals by up to 50%, faster or slower. We
compute the alignment between the distorted MIDI files and
the original audio recordings using the method described
in [8], which combines chroma features with onset features.
To measure the alignment accuracy, we computed for each
recording the percentage of notes with an alignment error
of less than 50ms for the onset position. The distribution of
these values over all files is shown in the form of box-and-
whisker plots in Figure 4.

This score-to-audio method is more robust than the
EchoNest audio ID retrieval. The median over all files
remains greater than 90% for all degradations, with two
exceptions: Live and Smartphone Playback. Here, it is in-
teresting to investigate the underlying reasons. The method
employs a relatively simple onset detector to refine the
alignment. The room IR used in the Live setting contains
several early reflections, which generates several closely
located ‘copies’ of onsets. These can easily be confused
with the original onset. In the Phone Playback scenario,
the significantly lower performance might be a result of ap-
plying the impulse response for the phone’s speaker, which
strongly attenuates all frequencies below 500 Hz including
all fundamental frequencies up to B4. This leads to sub-
stantial differences between the observed audio and audio
expected based on the score.

3.3 Beat-tracking

The aim of beat-tracking is to automatically find the time-
stamps of all beats in a piece of music. We compare two
beat-trackers: BeatRoot 7 [5] and Davies [4] (QM Vamp
Plugins implementation). BeatRoot first estimates note on-
set times, and forms a large number of tempo and beat
hypotheses based on these onsets. A multiple-agent archi-
tecture is then used to determine the final beat estimates
from the hypotheses. The Davies beat-tracker does not
directly work on onsets but uses a continuous mid-level
representation of onset salience, on which a comb filter is
used to calculate the salience of different beat periods and
beat alignments. Dynamic programming is used to retrieve

7
http://www.eecs.qmul.ac.uk/
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simond/beatroot, vers. 0.5.8

Beat-tracking

Like score-to-audio alignment, 
beat-tracking suffers from the 
echoes induced by the Live 
Recording degradation.

Davies’s beat tracker seems to 
cope slightly better (possibly 
because it does not rely on a 
onset detection stage).

Chord detection

Chord detection suffers from 
missing bass frequencies, an 
effect of the Phone Playback 
degradation.

While otherwise more 
accurate, HPA’s performance 
suffers significantly more under 
this degradation.
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Figure 6: Chord detection performance: Real World Degra-
dations

the final beat estimate. Due to its dependence on onsets we
would expect BeatRoot to be particularly susceptible to the
Live setting (see Section 3.2).

We prepared 180 songs by the Beatles by degrading
them using the Real World Degradations, resulting in 1260
wav files. Beats were extracted with both beat-trackers. We
used a ±70ms tolerance window to calculate the F measure
for every song against human annotated ground-truth [14].
Figure 5 shows box-and-whisker plots of the F measure
distributions, by degradation and beat-tracking method. For
the original audio and most of the Real World Degradations,
both beat-tracking methods show good performance, with
median F measures always exceeding 0.85. With similar
medians and inter-quartile ranges neither method has a clear
advantage. The obvious exception is the Live Recording
degradation, where the median F measure of both methods
is substantially lower. BeatRoot: 0.65 (original: 0.92);
Davies’s: 0.77 (original: 0.94). As explained in the case
of score-to-audio alignment (Section 3.2), the likely cause
are spurious onsets introduced by the impulse response; the
Davies beat-tracker, which does not work on discrete onsets,
is less affected.

3.4 Chord Detection

Chord detection is concerned with the transcription of the
chord sequence in a piece of music. We test two different
chord detection tools: Chordino 8 [15] and HPA 9 [17].
Chordino uses NNLS Chroma as a low-level feature, then
matches manually defined chord templates to the chroma.
Chords are modelled as hidden states in a hidden Markov
model, and smoothing is achieved using Viterbi-decoding.
HPA uses the same basic architecture, with some distinct
differences: a beat-quantised, perceptually-inspired chroma
representation (HPA chroma); a more complex probabilistic
model that involves key and bass context; machine-learned
chord profiles and transition parameters.

We continue to use the 180 songs by the Beatles from
our beat-tracking experiment, as chord annotations are also
available for them [10]. The chord detection outputs are

8
http://isophonics.net/nnls-chroma, Version 0.2.1

9
https://patterns.enm.bris.ac.uk/

hpa-software-package, Version 1.0
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Figure 7: Chord detection performance: High-pass filter
degradations.

evaluated by calculating the relative correct overlap for
every song using a MIREX-style major/minor scheme [15].

Figure 6 shows box-and-whisker plots of the song-wise
results by degradation and method. For the original au-
dio and most degradations, HPA consistently outperforms
Chordino, possibly due to its advanced exploitation of musi-
cal context and machine learning. Unlike the beat-trackers,
both chord detection methods are relatively robust to the
Live Recording degradation, with medians dropping less
than 10 percentage points: Chordino 0.74 (original: 0.80),
HPA: 0.75 (original: 0.84). Instead, they falter on the
Smartphone Playback degradation: Chordino 0.67 (original:
0.80), HPA: 0.36 (original: 0.84). In order to understand
whether this drop was caused by the degradation’s high-
pass characteristic (compare Section 3.2), we calculated
five further degradations using the High-pass Filter degra-
dation unit with the stop band edge parameter set to 50,
100, 200, 400 and 800 Hz, respectively. Figure 7 shows that
the methods react very differently. The Chordino method
remains relatively robust with the lowest median, 0.73, for
a 400Hz stop band edge. The HPA method’s advantage over
Chordino is maintained for the 50Hz filter, but increasingly
fails for higher cutoff frequencies with median values of
0.60 (200Hz), 0.29 (400Hz) and 0.05 (800Hz). In order
to locate the reason for the strong drop-off, we studied the
HPA chroma feature. Figure 8 shows an example of how the
high-pass filter strongly affects the character of the feature,
obfuscating the clear C major and A minor patterns.

C

D

E
F

G

A

B

original 400Hz High-pass

time time

Figure 8: HPA chroma for the original and a high-pass
filtered version of a snippet from ‘Misery’ by the Beatles.
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