
The Audio Degradation
Toolbox
and its Application to Robustness Evaluation
Sebastian Ewert and Matthias Mauch

http://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox/

Friday, 1 November 13

reverb

photo by steveleenow

Friday, 1 November 13

lossy compression

photo by dan taylor

Friday, 1 November 13

bad analog-to-digital
conversion photo by emilio di fabio

Friday, 1 November 13

low quality microphone
photo by JeffaCubed

Friday, 1 November 13

Environmental noise
Friday, 1 November 13

...and many other things
degrade audio.

irregular tape playback

dynamic range compression in radio and tv broadcasts

audio speedup on the radio

noise

clipping and other distortion

... and yet more.

Friday, 1 November 13

Audio Collection Quality

most audio collections

contain some audio of low quality

contain recordings of different qualities

contain recording of unknown quality

bad

ok

ok

bad

bad

ok

alright-ish

bad

ok
Friday, 1 November 13

Audio Collection Quality

most audio collections

contain some audio of low quality

contain recordings of different qualities

contain recording of unknown quality

Friday, 1 November 13

Impact on Music Informatics

methods are usually tested only on one (or few) audio
collections, hence:

feature extractors (etc.) might fail in the real world
affects MIR researchers’ work

if feature extractors work, it is not clear if they
corrleate with content or audio quality
affects ‘digital musicologists’ and industry

Friday, 1 November 13

Audio Degradation Toolbox
most comprehensive
collection of Matlab code for
audio degradation

designed to make it easy to
degrade audio in many
different ways

aim: encourage MIR
researchers to test their
algorithms under many
different conditions GPL open source

on SoundSoftware
Friday, 1 November 13

Degradation Units
Add Noise

Add Sound

Attenuation

Aliasing

Clipping

Delay

Dynamic Range Compr.

Apply Impulse Response

High-pass filter

Low-pass filter

MP3 Compression

Saturation

Speedup

Wow Resampling

Friday, 1 November 13

Degradation Units
Add Noise

Add Sound

Attenuation

Aliasing

Clipping

Delay

Dynamic Range Compr.

Apply Impulse Response

High-pass filter

Low-pass filter

MP3 Compression

Saturation

Speedup

Wow Resampling

sounds
included:

pub sound env.,
vinyl crackle

Friday, 1 November 13

Degradation Units
Add Noise

Add Sound

Attenuation

Aliasing

Clipping

Delay

Dynamic Range Compr.

Apply Impulse Response

High-pass filter

Low-pass filter

MP3 Compression

Saturation

Speedup

Wow Resampling

sounds
included:

pub sound env.,
vinyl crackle

room,
microphone,

speaker and vinyl
player IRs

Friday, 1 November 13

Degradation Unit Example

example sound before / after

why “timestamps” — we’ll see later.

audio_out = degradationUnit_addNoise(

audio, samplingFreq)

a) only audio processing

parameter.noiseColor = ’brown’;

[audio_out, timestamps_out] =

degradationUnit_addNoise(audio, samplingFreq,

timestamps, parameter)

b) with timestamps and a parameter variable

Figure 1: Example calls to a degradation unit function.

2. THE AUDIO DEGRADATION TOOLBOX

The Audio Degradation Toolbox (ADT) consists of Mat-
lab code for the controlled degradation of audio signals,
and for the adaptation of ground-truth to the degraded au-
dio. Additionally, some scripts are provided to facilitate
batch processing. The source code is hosted on SoundSoft-
ware.org 2 and is freely available under a GPL license. The
ADT is based on two concepts: (a) degradation unit: a
Matlab function with optional parameters that performs a
simple audio (and ground-truth) transformation, (b) degra-
dation: parametrisation of several degradation units into a
chain. The remainder of this section details the rationale and
implementation of the degradation units and degradations.

2.1 Degradation Units

The ADT contains 14 basic degradation units implemented
as Matlab functions. All degradation units use the same
calling conventions. Figure 1a illustrates the simplest case,
in which a degradation unit is called with two arguments:
an audio data matrix (audio) and a scalar providing the
audio sampling frequency (samplingFreq); the function
returns a matrix of degraded audio data (audio out) with
the same sampling frequency as the input audio.

Some degradations change the speed of the audio or
warp time in other ways (see detailed descriptions, be-
low) with the result that timestamps annotated with respect
to the original audio will no longer be valid. In particu-
lar, ground-truth annotated on the original audio would be
meaningless on such degraded audio. Therefore, all degra-
dation units implement a timestamp transformation that
maps the input timestamps to the timeline of the output
audio. The transformed ground-truth can then be used for
evaluation on degraded audio data. Figure 1b illustrates how
the user can provide additional timestamps (timestamps)
and receive an output variable containing adjusted time-
stamps (timestamps out). For convenience, all degrada-
tion units have a default setting, but they will typically be
called with customised parameter settings, as in Figure 1b.
More on parameters in Section 2.2.

What follows are short descriptions of the individual
degradation units contained in the ADT. Degradation units
that introduce a time warping are marked with the letter W.
More documentation can be found as comment headers in
the respective source code files.

2
http://code.soundsoftware.ac.uk/projects/

audio-degradation-toolbox

Room Impulse Responses [20]: Great Hall, Classroom, Octagon.
Smartphone Impulse Responses (recorded for the ADT: exponential
sine sweep, inverse filtering):
Google Nexus One microphone, Google Nexus One speaker.
Vinyl (recorded for the ADT: inverse filtered sine sweep output from
iZotope Vinyl 1.73b plugin): Vinyl Player 1960 (raw and smoothed)

(a) Impulse Responses

Pub Sound Environment [9].
Vinyl: recorded for the ADT using the iZotope Vinyl plugin.

(b) Sounds

Table 1: Data included in the ADT.

Add Noise. Adds artificial random noise of different
‘colours’ (brown, pink, white, blue, violet) to the signal
at a specified signal-to noise ratio (SNR). Implemented as
white noise plus filter.
Add Sound. Adds an arbitrary signal to a given signal at a
specified SNR and takes care of sampling rate conversions
(the ADT comes with two sounds, see Table 1b).
Attenuation. Makes the signal quieter by a specified num-
ber of decibels or a factor specified.
Aliasing. Purposeful violation of the sampling theorem:
the signal is down-sampled to a specified sampling rate
without lowpass filtering. The original sampling rate is
restored using a regular resampling method (with filtering).
Clipping. Normalises the audio signal such that a specified
number or percentage of samples is outside the interval
[�1, 1], and each resulting sample x is clipped to sign(x).
Delay (W). Pads the beginning of the input audio with a
specified number of zero samples. The timestamps are
delayed accordingly.
Dynamic Range Compression (W). Applies a signal-
dependent normalisation to the audio signal, reducing the
energy difference between soft and loud parts of the signal.
The implementation is adapted from [22], allowing specifi-
cation of several parameters including attack, release, delay
and slope. As the delay parameter introduces a constant
time delay, the output timestamps are adjusted accordingly.
Apply Impulse Response (W). Filters the signal using
one of six natural impulse responses (IR) provided with
the toolbox (see Table 1a). As this process introduces an
IR-dependent delay, timestamps are adjusted using the IR’s
mean group delay.
High-pass Filter. Applies a linear-phase high-pass filter
constructed using the Hamming window method. Parame-
ters are stop and pass band edge frequencies. The output is
cropped to achieve zero phase, hence no time-warp.
Low-pass Filter. Analogous to High-pass Filter.
MP3 Compression. Compresses the audio data to an MP3
file with a specified bit rate using the Lame encoder 3 . The
encoder and decoder delays are compensated for by also
using Lame as the decoder.
Saturation. Applies the transformation x sin(⇡x) mul-
tiple times (as specified) to each sample x 2 [�1, 1], which
drives the sample towards the margins of -1 or 1, resulting
in a simple imitation of a saturation effect.

3
http://lame.sourceforge.net

Friday, 1 November 13

Degradations
to make complex “Degradations” we can make chains
from degradation units

... like audio effects!

Example: Radio Broadcast Degradation

Dynamic Range Compr.

Speedup

Friday, 1 November 13

Degradations
to make complex “Degradations” we can make chains
from degradation units

... like audio effects!

Example: Radio Broadcast Degradation

Radio Broadcast
Dynamic Range Compr.

Speedup

Friday, 1 November 13

Degradations — examples

Lots of audio examples (file://localhost/Users/
matthiasm/code/audio-degradation-toolbox/
html/audio_examples.html)
Examples with spectrogram:

Wow resampling on cello (file6)
Live Recording on file1

Friday, 1 November 13

Comparing to Ground Truth
one main purpose:
evaluate methods under different degradations

problem — we have time-distorting degradations

solution: every degradation can also transform ground
truth to the time line of the degraded audio

example: beat tracking ground truth after “Speedup”
degradation

Friday, 1 November 13

Comparing to Ground Truth
one main purpose:
evaluate methods under different degradations

problem — we have time-distorting degradations

solution: every degradation can also transform ground
truth to the time line of the degraded audio

example: beat tracking ground truth after “Speedup”
degradation

time

original ground truth

Friday, 1 November 13

Comparing to Ground Truth
one main purpose:
evaluate methods under different degradations

problem — we have time-distorting degradations

solution: every degradation can also transform ground
truth to the time line of the degraded audio

example: beat tracking ground truth after “Speedup”
degradation

time

original ground truth

transformed

Friday, 1 November 13

Revisit Example

Radio Broadcast

Dynamic Range Compr.

Speedup

audio

ground truth
timestamps

transformed
ground truth

transformed

audio

degradation unit

degradation unit

degradation

Friday, 1 November 13

Experiments on
‘Real-World’ Degradations

Live Recording

Vinyl Recording

Smartphone Recording

Radio Broadcast

Smartphone Playback

Strong MP3 Compression

Friday, 1 November 13

Results I — Audio ID
audio ID fails for most “Real-World” degradations, not
for mp3

robustness to pink noise is ok

function degr_cfg = demoDegradation()

degr_cfg(1).methodname = ’degradationUnit_1’;

degr_cfg(1).parameter.someParam1 = 3;

degr_cfg(2).methodname = ’degradationUnit_2’;

degr_cfg(2).parameter.someParam2 = 4;

a) Specifying a degradation.

audio_out = applyDegradation(

’demoDegradation’,audio,samplingFreq);

b) Applying a degradation to audio data.

Figure 2: Demo degradation: specification and application.

Speed-up (W). The signal is resampled at a specified sam-
pling rate but returned using the original sampling rate,
which results in a speed-up (or slow-down). Timestamps
are adjusted accordingly.
Wow Resampling (W). Similar to Speed-up, but the re-
sampling frequency is time-dependent: it oscillates around
the original sampling rate at a specified frequency and am-
plitude, imitating non-constant speed in record players or
tape machines. Timestamps are non-linearly warped to
correspond to the output audio.

These degradation units implement audio and ground-
truth transformation and thus form the building blocks for
higher-level degradations, the subject of the next subsection.

2.2 Degradations

A degradation is a chain of degradation units with fixed
parameters. The purpose of daisy-chaining degradation
units is to allow the creation of more complex degrada-
tions than would be possible by using the degradation units
alone. A degradation is defined in a Matlab function that
acts as a configuration file describing the order and pa-
rameters of all degradation units used. An example is
given in Figure 2a: the demo degradation specifies a first
degradation unit degradationUnit 1 with the parame-
ter someParam1 set to 3, and a second degradation unit
degradationUnit 2 with the parameter someParam2 set
to 4. In this way, the audio processing chain can be precisely
specified. Any degradation thus defined can be applied to
audio using the Matlab function applyDegradation pro-
vided by the ADT, see Figure 2b. Based on the degradation
name, given as the first argument, the function retrieves
the degradation definition in the struct array degr cfg and
cascades the degradation units in the specified order. Op-
tionally, timestamp data can be supplied, which is also
sequentially transformed to match the output audio, which
is useful to make ground-truth usable on the degraded au-
dio (see Section 2.1). The ADT comes with a range of
pre-defined degradations. For the purpose of this paper we
focus on the subset of six ‘Real World Degradations’ that
cover a variety of scenarios (more precise definitions come
with the ADT source code).

Live Recording. Based on two degradation units: 1. Apply
Impulse Response, using an IR of a large room (‘Great Hall’,
taken from [20] and included in the ADT), 2. Add Noise:
adding light pink noise.
Radio Broadcast. Based on two degradation units: 1. Dy-
namic Range Compression at a medium level to emulate

correct incorrect not identified

Original 100 0 0
Live 0 0 100
Radio 3 3 94
PhonePlay 0 1 99
PhoneRec 5 7 88
MP3 100 0 0
Vinyl 4 0 96

Table 2: EchoNest audio ID results for 100 test songs.

0
20
40
60
80

100

dB SNR

co
rre

ct

●

●

●

●●●●

orig 40 30 20 10 5 0

Figure 3: EchoNest audio ID results with pink noise.

the high loudness characteristic of many radio stations,
2. Speed-up, by 2%, which is commonly applied to mu-
sic in commercial radio stations to shorten the music to
create more advertisement time.
Smartphone Playback. Based on two degradation units
simulating a user playing back audio on a smartphone:
1. Apply Impulse Response, using the IR of a smartphone
speaker (‘Google Nexus One’, Table 1a), which has a high-
pass characteristic and a cutoff at ⇡ 500Hz. 2. Add Noise,
adding light pink noise.
Smartphone Recording. Based on four degradation units,
simulating a user holding a phone in front of a speaker:
1. Apply Impulse Response, using the IR of a smartphone
microphone (‘Google Nexus One’, Table 1a), 2. Dynamic
Range Compression, to simulate the phone’s auto-gain,
3. Clipping, 3% of samples, 4. Add Noise, adding medium
pink noise.
Strong MP3 Compression. Based on one degradation
unit: MP3 Compression at a constant bit rate of 64 kbps.
Vinyl. Based on four degradation units: 1. Apply Impulse
Response, using a typical record player impulse response
(Table 1a), 2. Add Sound, adding record player crackle
(Table 1b), 3. Wow Resample, imitating wow-and-flutter,
with the wow-frequency set to 33 rpm (speed of Long Play
records), 4. Add Noise, adding light pink noise.

3. APPLICATIONS

In order to illustrate the insights that can be gained by using
the ADT we evaluated several methods for standard music
informatics tasks on suitable audio data. The results and
brief discussions are given below.

3.1 Audio Identification Service

As a proof of concept we used the free web-based audio
identification (audio ID) service from the Song API 4 pro-

4
http://developer.echonest.com/docs/v4/song.html

Friday, 1 November 13

Results I — Audio ID
audio ID fails for most “Real-World” degradations, not
for mp3

robustness to pink noise is ok

function degr_cfg = demoDegradation()

degr_cfg(1).methodname = ’degradationUnit_1’;

degr_cfg(1).parameter.someParam1 = 3;

degr_cfg(2).methodname = ’degradationUnit_2’;

degr_cfg(2).parameter.someParam2 = 4;

a) Specifying a degradation.

audio_out = applyDegradation(

’demoDegradation’,audio,samplingFreq);

b) Applying a degradation to audio data.

Figure 2: Demo degradation: specification and application.

Speed-up (W). The signal is resampled at a specified sam-
pling rate but returned using the original sampling rate,
which results in a speed-up (or slow-down). Timestamps
are adjusted accordingly.
Wow Resampling (W). Similar to Speed-up, but the re-
sampling frequency is time-dependent: it oscillates around
the original sampling rate at a specified frequency and am-
plitude, imitating non-constant speed in record players or
tape machines. Timestamps are non-linearly warped to
correspond to the output audio.

These degradation units implement audio and ground-
truth transformation and thus form the building blocks for
higher-level degradations, the subject of the next subsection.

2.2 Degradations

A degradation is a chain of degradation units with fixed
parameters. The purpose of daisy-chaining degradation
units is to allow the creation of more complex degrada-
tions than would be possible by using the degradation units
alone. A degradation is defined in a Matlab function that
acts as a configuration file describing the order and pa-
rameters of all degradation units used. An example is
given in Figure 2a: the demo degradation specifies a first
degradation unit degradationUnit 1 with the parame-
ter someParam1 set to 3, and a second degradation unit
degradationUnit 2 with the parameter someParam2 set
to 4. In this way, the audio processing chain can be precisely
specified. Any degradation thus defined can be applied to
audio using the Matlab function applyDegradation pro-
vided by the ADT, see Figure 2b. Based on the degradation
name, given as the first argument, the function retrieves
the degradation definition in the struct array degr cfg and
cascades the degradation units in the specified order. Op-
tionally, timestamp data can be supplied, which is also
sequentially transformed to match the output audio, which
is useful to make ground-truth usable on the degraded au-
dio (see Section 2.1). The ADT comes with a range of
pre-defined degradations. For the purpose of this paper we
focus on the subset of six ‘Real World Degradations’ that
cover a variety of scenarios (more precise definitions come
with the ADT source code).

Live Recording. Based on two degradation units: 1. Apply
Impulse Response, using an IR of a large room (‘Great Hall’,
taken from [20] and included in the ADT), 2. Add Noise:
adding light pink noise.
Radio Broadcast. Based on two degradation units: 1. Dy-
namic Range Compression at a medium level to emulate

correct incorrect not identified

Original 100 0 0
Live 0 0 100
Radio 3 3 94
PhonePlay 0 1 99
PhoneRec 5 7 88
MP3 100 0 0
Vinyl 4 0 96

Table 2: EchoNest audio ID results for 100 test songs.

0
20
40
60
80

100

dB SNR

co
rre

ct

●

●

●

●●●●

orig 40 30 20 10 5 0

Figure 3: EchoNest audio ID results with pink noise.

the high loudness characteristic of many radio stations,
2. Speed-up, by 2%, which is commonly applied to mu-
sic in commercial radio stations to shorten the music to
create more advertisement time.
Smartphone Playback. Based on two degradation units
simulating a user playing back audio on a smartphone:
1. Apply Impulse Response, using the IR of a smartphone
speaker (‘Google Nexus One’, Table 1a), which has a high-
pass characteristic and a cutoff at ⇡ 500Hz. 2. Add Noise,
adding light pink noise.
Smartphone Recording. Based on four degradation units,
simulating a user holding a phone in front of a speaker:
1. Apply Impulse Response, using the IR of a smartphone
microphone (‘Google Nexus One’, Table 1a), 2. Dynamic
Range Compression, to simulate the phone’s auto-gain,
3. Clipping, 3% of samples, 4. Add Noise, adding medium
pink noise.
Strong MP3 Compression. Based on one degradation
unit: MP3 Compression at a constant bit rate of 64 kbps.
Vinyl. Based on four degradation units: 1. Apply Impulse
Response, using a typical record player impulse response
(Table 1a), 2. Add Sound, adding record player crackle
(Table 1b), 3. Wow Resample, imitating wow-and-flutter,
with the wow-frequency set to 33 rpm (speed of Long Play
records), 4. Add Noise, adding light pink noise.

3. APPLICATIONS

In order to illustrate the insights that can be gained by using
the ADT we evaluated several methods for standard music
informatics tasks on suitable audio data. The results and
brief discussions are given below.

3.1 Audio Identification Service

As a proof of concept we used the free web-based audio
identification (audio ID) service from the Song API 4 pro-

4
http://developer.echonest.com/docs/v4/song.html

function degr_cfg = demoDegradation()

degr_cfg(1).methodname = ’degradationUnit_1’;

degr_cfg(1).parameter.someParam1 = 3;

degr_cfg(2).methodname = ’degradationUnit_2’;

degr_cfg(2).parameter.someParam2 = 4;

a) Specifying a degradation.

audio_out = applyDegradation(

’demoDegradation’,audio,samplingFreq);

b) Applying a degradation to audio data.

Figure 2: Demo degradation: specification and application.

Speed-up (W). The signal is resampled at a specified sam-
pling rate but returned using the original sampling rate,
which results in a speed-up (or slow-down). Timestamps
are adjusted accordingly.
Wow Resampling (W). Similar to Speed-up, but the re-
sampling frequency is time-dependent: it oscillates around
the original sampling rate at a specified frequency and am-
plitude, imitating non-constant speed in record players or
tape machines. Timestamps are non-linearly warped to
correspond to the output audio.

These degradation units implement audio and ground-
truth transformation and thus form the building blocks for
higher-level degradations, the subject of the next subsection.

2.2 Degradations

A degradation is a chain of degradation units with fixed
parameters. The purpose of daisy-chaining degradation
units is to allow the creation of more complex degrada-
tions than would be possible by using the degradation units
alone. A degradation is defined in a Matlab function that
acts as a configuration file describing the order and pa-
rameters of all degradation units used. An example is
given in Figure 2a: the demo degradation specifies a first
degradation unit degradationUnit 1 with the parame-
ter someParam1 set to 3, and a second degradation unit
degradationUnit 2 with the parameter someParam2 set
to 4. In this way, the audio processing chain can be precisely
specified. Any degradation thus defined can be applied to
audio using the Matlab function applyDegradation pro-
vided by the ADT, see Figure 2b. Based on the degradation
name, given as the first argument, the function retrieves
the degradation definition in the struct array degr cfg and
cascades the degradation units in the specified order. Op-
tionally, timestamp data can be supplied, which is also
sequentially transformed to match the output audio, which
is useful to make ground-truth usable on the degraded au-
dio (see Section 2.1). The ADT comes with a range of
pre-defined degradations. For the purpose of this paper we
focus on the subset of six ‘Real World Degradations’ that
cover a variety of scenarios (more precise definitions come
with the ADT source code).

Live Recording. Based on two degradation units: 1. Apply
Impulse Response, using an IR of a large room (‘Great Hall’,
taken from [20] and included in the ADT), 2. Add Noise:
adding light pink noise.
Radio Broadcast. Based on two degradation units: 1. Dy-
namic Range Compression at a medium level to emulate

correct incorrect not identified

Original 100 0 0
Live 0 0 100
Radio 3 3 94
PhonePlay 0 1 99
PhoneRec 5 7 88
MP3 100 0 0
Vinyl 4 0 96

Table 2: EchoNest audio ID results for 100 test songs.

0
20
40
60
80

100

dB SNR

co
rre

ct

●

●

●

●●●●

orig 40 30 20 10 5 0

Figure 3: EchoNest audio ID results with pink noise.

the high loudness characteristic of many radio stations,
2. Speed-up, by 2%, which is commonly applied to mu-
sic in commercial radio stations to shorten the music to
create more advertisement time.
Smartphone Playback. Based on two degradation units
simulating a user playing back audio on a smartphone:
1. Apply Impulse Response, using the IR of a smartphone
speaker (‘Google Nexus One’, Table 1a), which has a high-
pass characteristic and a cutoff at ⇡ 500Hz. 2. Add Noise,
adding light pink noise.
Smartphone Recording. Based on four degradation units,
simulating a user holding a phone in front of a speaker:
1. Apply Impulse Response, using the IR of a smartphone
microphone (‘Google Nexus One’, Table 1a), 2. Dynamic
Range Compression, to simulate the phone’s auto-gain,
3. Clipping, 3% of samples, 4. Add Noise, adding medium
pink noise.
Strong MP3 Compression. Based on one degradation
unit: MP3 Compression at a constant bit rate of 64 kbps.
Vinyl. Based on four degradation units: 1. Apply Impulse
Response, using a typical record player impulse response
(Table 1a), 2. Add Sound, adding record player crackle
(Table 1b), 3. Wow Resample, imitating wow-and-flutter,
with the wow-frequency set to 33 rpm (speed of Long Play
records), 4. Add Noise, adding light pink noise.

3. APPLICATIONS

In order to illustrate the insights that can be gained by using
the ADT we evaluated several methods for standard music
informatics tasks on suitable audio data. The results and
brief discussions are given below.

3.1 Audio Identification Service

As a proof of concept we used the free web-based audio
identification (audio ID) service from the Song API 4 pro-

4
http://developer.echonest.com/docs/v4/song.html

Friday, 1 November 13

Results II — Score-to-audio
alignment

pretty much falls over for
“Live” and “Phone
Playback” degradations

explanations: onset
duplication; bass
harmony missing

pe
rc

en
ta

ge
 in

 5
0m

s
wi

nd
ow

30

40

50

60

70

80

90

100

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Figure 4: Score-to-Audio alignment accuracy under Real
World Degradations. The boxes indicate the 1st, 2nd (me-
dian) and 3rd quartiles, the whiskers extend to ‘the most
extreme data point which is no more than 1.5 times the
interquartile range’ (R software [19]).

vided by the company EchoNest. A user can compute an au-
dio fingerprint using a dedicated program (ENMFP method)
and query the EchoNest database for a corresponding identi-
fication number, artist and track name. If the system cannot
identify a recording, that information is also returned.

We queried the database using 100 original rock and pop
songs 5 taken from commercial CDs as well as degraded
versions using the Real World Degradations defined in Sec-
tion 2.2. The returned metadata was manually validated.
The design goals for the EchoNest Audio ID service are
clearly reflected in the results in Table 2: all 100 original
tracks are correctly identified, as were all 100 files with
strong MP3 compression. In contrast, all other degradations
led to a clear failure with at most five recordings identified
correctly, and low precision with up to seven recordings
identified incorrectly. 6 However, as illustrated in Figure 3,
an additional test showed that the system is reasonably ro-
bust against added pink noise up to a signal-to-noise ratio
(SNR) of 10dB, for which 80 pieces were still correctly
recognised (Figure 3). The poor real-world results are not
surprising, since the service is supposed to discriminate
between versions of the same song, not to detect similar
songs. By contrast, the music informatics tasks below are
concerned with the extraction of musical attributes that
should persist even in degraded audio.

3.2 Score-to-Audio Alignment

Given a score and an audio recording for a piece of music,
the aim of score-to-audio alignment is to find, for every posi-
tion in the score, the corresponding position in the recording.
In contrast to the audio ID task, which assumes a particular
recording, the task is meant to work on any rendition or
recording of the same musical work, and hence we expect a
higher robustness against our real-world degradations. We
use all 50 pieces from the Saarland Music Data [16], which
contains audio recordings and corresponding MIDI files,
both recorded using a Yamaha Disklavier. Our experimental

5 A list of files is available on the project’s website.
6 In all cases, the songs are still easily recognisable to human listeners.

F
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

BeatRoot
Davies

Figure 5: Comparison of beat-tracking performance under
Real World Degradations.

setup is similar to the one described in [8]: the MIDI files
are temporally distorted by randomly changing their tempo
in 10-second intervals by up to 50%, faster or slower. We
compute the alignment between the distorted MIDI files and
the original audio recordings using the method described
in [8], which combines chroma features with onset features.
To measure the alignment accuracy, we computed for each
recording the percentage of notes with an alignment error
of less than 50ms for the onset position. The distribution of
these values over all files is shown in the form of box-and-
whisker plots in Figure 4.

This score-to-audio method is more robust than the
EchoNest audio ID retrieval. The median over all files
remains greater than 90% for all degradations, with two
exceptions: Live and Smartphone Playback. Here, it is in-
teresting to investigate the underlying reasons. The method
employs a relatively simple onset detector to refine the
alignment. The room IR used in the Live setting contains
several early reflections, which generates several closely
located ‘copies’ of onsets. These can easily be confused
with the original onset. In the Phone Playback scenario,
the significantly lower performance might be a result of ap-
plying the impulse response for the phone’s speaker, which
strongly attenuates all frequencies below 500 Hz including
all fundamental frequencies up to B4. This leads to sub-
stantial differences between the observed audio and audio
expected based on the score.

3.3 Beat-tracking

The aim of beat-tracking is to automatically find the time-
stamps of all beats in a piece of music. We compare two
beat-trackers: BeatRoot 7 [5] and Davies [4] (QM Vamp
Plugins implementation). BeatRoot first estimates note on-
set times, and forms a large number of tempo and beat
hypotheses based on these onsets. A multiple-agent archi-
tecture is then used to determine the final beat estimates
from the hypotheses. The Davies beat-tracker does not
directly work on onsets but uses a continuous mid-level
representation of onset salience, on which a comb filter is
used to calculate the salience of different beat periods and
beat alignments. Dynamic programming is used to retrieve

7
http://www.eecs.qmul.ac.uk/

˜

simond/beatroot, vers. 0.5.8

Friday, 1 November 13

Results III — Beat-tracking
compare two methods: BeatRoot, Davies

very similar, but Davies more robust to “Live”
degradation

pe
rc

en
ta

ge
 in

 5
0m

s
wi

nd
ow

30

40

50

60

70

80

90

100

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Figure 4: Score-to-Audio alignment accuracy under Real
World Degradations. The boxes indicate the 1st, 2nd (me-
dian) and 3rd quartiles, the whiskers extend to ‘the most
extreme data point which is no more than 1.5 times the
interquartile range’ (R software [19]).

vided by the company EchoNest. A user can compute an au-
dio fingerprint using a dedicated program (ENMFP method)
and query the EchoNest database for a corresponding identi-
fication number, artist and track name. If the system cannot
identify a recording, that information is also returned.

We queried the database using 100 original rock and pop
songs 5 taken from commercial CDs as well as degraded
versions using the Real World Degradations defined in Sec-
tion 2.2. The returned metadata was manually validated.
The design goals for the EchoNest Audio ID service are
clearly reflected in the results in Table 2: all 100 original
tracks are correctly identified, as were all 100 files with
strong MP3 compression. In contrast, all other degradations
led to a clear failure with at most five recordings identified
correctly, and low precision with up to seven recordings
identified incorrectly. 6 However, as illustrated in Figure 3,
an additional test showed that the system is reasonably ro-
bust against added pink noise up to a signal-to-noise ratio
(SNR) of 10dB, for which 80 pieces were still correctly
recognised (Figure 3). The poor real-world results are not
surprising, since the service is supposed to discriminate
between versions of the same song, not to detect similar
songs. By contrast, the music informatics tasks below are
concerned with the extraction of musical attributes that
should persist even in degraded audio.

3.2 Score-to-Audio Alignment

Given a score and an audio recording for a piece of music,
the aim of score-to-audio alignment is to find, for every posi-
tion in the score, the corresponding position in the recording.
In contrast to the audio ID task, which assumes a particular
recording, the task is meant to work on any rendition or
recording of the same musical work, and hence we expect a
higher robustness against our real-world degradations. We
use all 50 pieces from the Saarland Music Data [16], which
contains audio recordings and corresponding MIDI files,
both recorded using a Yamaha Disklavier. Our experimental

5 A list of files is available on the project’s website.
6 In all cases, the songs are still easily recognisable to human listeners.

F
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

BeatRoot
Davies

Figure 5: Comparison of beat-tracking performance under
Real World Degradations.

setup is similar to the one described in [8]: the MIDI files
are temporally distorted by randomly changing their tempo
in 10-second intervals by up to 50%, faster or slower. We
compute the alignment between the distorted MIDI files and
the original audio recordings using the method described
in [8], which combines chroma features with onset features.
To measure the alignment accuracy, we computed for each
recording the percentage of notes with an alignment error
of less than 50ms for the onset position. The distribution of
these values over all files is shown in the form of box-and-
whisker plots in Figure 4.

This score-to-audio method is more robust than the
EchoNest audio ID retrieval. The median over all files
remains greater than 90% for all degradations, with two
exceptions: Live and Smartphone Playback. Here, it is in-
teresting to investigate the underlying reasons. The method
employs a relatively simple onset detector to refine the
alignment. The room IR used in the Live setting contains
several early reflections, which generates several closely
located ‘copies’ of onsets. These can easily be confused
with the original onset. In the Phone Playback scenario,
the significantly lower performance might be a result of ap-
plying the impulse response for the phone’s speaker, which
strongly attenuates all frequencies below 500 Hz including
all fundamental frequencies up to B4. This leads to sub-
stantial differences between the observed audio and audio
expected based on the score.

3.3 Beat-tracking

The aim of beat-tracking is to automatically find the time-
stamps of all beats in a piece of music. We compare two
beat-trackers: BeatRoot 7 [5] and Davies [4] (QM Vamp
Plugins implementation). BeatRoot first estimates note on-
set times, and forms a large number of tempo and beat
hypotheses based on these onsets. A multiple-agent archi-
tecture is then used to determine the final beat estimates
from the hypotheses. The Davies beat-tracker does not
directly work on onsets but uses a continuous mid-level
representation of onset salience, on which a comb filter is
used to calculate the salience of different beat periods and
beat alignments. Dynamic programming is used to retrieve

7
http://www.eecs.qmul.ac.uk/

˜

simond/beatroot, vers. 0.5.8

Friday, 1 November 13

Results IV — Chord
recognition

compare two methods:
Chordino, HPA

HPA usually better,
Chordino more robust
on “Phone Play”

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Chordino
HPA

Figure 6: Chord detection performance: Real World Degra-
dations

the final beat estimate. Due to its dependence on onsets we
would expect BeatRoot to be particularly susceptible to the
Live setting (see Section 3.2).

We prepared 180 songs by the Beatles by degrading
them using the Real World Degradations, resulting in 1260
wav files. Beats were extracted with both beat-trackers. We
used a ±70ms tolerance window to calculate the F measure
for every song against human annotated ground-truth [14].
Figure 5 shows box-and-whisker plots of the F measure
distributions, by degradation and beat-tracking method. For
the original audio and most of the Real World Degradations,
both beat-tracking methods show good performance, with
median F measures always exceeding 0.85. With similar
medians and inter-quartile ranges neither method has a clear
advantage. The obvious exception is the Live Recording
degradation, where the median F measure of both methods
is substantially lower. BeatRoot: 0.65 (original: 0.92);
Davies’s: 0.77 (original: 0.94). As explained in the case
of score-to-audio alignment (Section 3.2), the likely cause
are spurious onsets introduced by the impulse response; the
Davies beat-tracker, which does not work on discrete onsets,
is less affected.

3.4 Chord Detection

Chord detection is concerned with the transcription of the
chord sequence in a piece of music. We test two different
chord detection tools: Chordino 8 [15] and HPA 9 [17].
Chordino uses NNLS Chroma as a low-level feature, then
matches manually defined chord templates to the chroma.
Chords are modelled as hidden states in a hidden Markov
model, and smoothing is achieved using Viterbi-decoding.
HPA uses the same basic architecture, with some distinct
differences: a beat-quantised, perceptually-inspired chroma
representation (HPA chroma); a more complex probabilistic
model that involves key and bass context; machine-learned
chord profiles and transition parameters.

We continue to use the 180 songs by the Beatles from
our beat-tracking experiment, as chord annotations are also
available for them [10]. The chord detection outputs are

8
http://isophonics.net/nnls-chroma, Version 0.2.1

9
https://patterns.enm.bris.ac.uk/

hpa-software-package, Version 1.0

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

HP 50
HP 10

0

HP 20
0

HP 40
0

HP 80
0

Chordino
HPA

Figure 7: Chord detection performance: High-pass filter
degradations.

evaluated by calculating the relative correct overlap for
every song using a MIREX-style major/minor scheme [15].

Figure 6 shows box-and-whisker plots of the song-wise
results by degradation and method. For the original au-
dio and most degradations, HPA consistently outperforms
Chordino, possibly due to its advanced exploitation of musi-
cal context and machine learning. Unlike the beat-trackers,
both chord detection methods are relatively robust to the
Live Recording degradation, with medians dropping less
than 10 percentage points: Chordino 0.74 (original: 0.80),
HPA: 0.75 (original: 0.84). Instead, they falter on the
Smartphone Playback degradation: Chordino 0.67 (original:
0.80), HPA: 0.36 (original: 0.84). In order to understand
whether this drop was caused by the degradation’s high-
pass characteristic (compare Section 3.2), we calculated
five further degradations using the High-pass Filter degra-
dation unit with the stop band edge parameter set to 50,
100, 200, 400 and 800 Hz, respectively. Figure 7 shows that
the methods react very differently. The Chordino method
remains relatively robust with the lowest median, 0.73, for
a 400Hz stop band edge. The HPA method’s advantage over
Chordino is maintained for the 50Hz filter, but increasingly
fails for higher cutoff frequencies with median values of
0.60 (200Hz), 0.29 (400Hz) and 0.05 (800Hz). In order
to locate the reason for the strong drop-off, we studied the
HPA chroma feature. Figure 8 shows an example of how the
high-pass filter strongly affects the character of the feature,
obfuscating the clear C major and A minor patterns.

C

D

E
F

G

A

B

original 400Hz High-pass

time time

Figure 8: HPA chroma for the original and a high-pass
filtered version of a snippet from ‘Misery’ by the Beatles.

Friday, 1 November 13

Results IV — Chord
recognition

compare two methods:
Chordino, HPA

HPA usually better,
Chordino more robust
on “Phone Play”

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Chordino
HPA

Figure 6: Chord detection performance: Real World Degra-
dations

the final beat estimate. Due to its dependence on onsets we
would expect BeatRoot to be particularly susceptible to the
Live setting (see Section 3.2).

We prepared 180 songs by the Beatles by degrading
them using the Real World Degradations, resulting in 1260
wav files. Beats were extracted with both beat-trackers. We
used a ±70ms tolerance window to calculate the F measure
for every song against human annotated ground-truth [14].
Figure 5 shows box-and-whisker plots of the F measure
distributions, by degradation and beat-tracking method. For
the original audio and most of the Real World Degradations,
both beat-tracking methods show good performance, with
median F measures always exceeding 0.85. With similar
medians and inter-quartile ranges neither method has a clear
advantage. The obvious exception is the Live Recording
degradation, where the median F measure of both methods
is substantially lower. BeatRoot: 0.65 (original: 0.92);
Davies’s: 0.77 (original: 0.94). As explained in the case
of score-to-audio alignment (Section 3.2), the likely cause
are spurious onsets introduced by the impulse response; the
Davies beat-tracker, which does not work on discrete onsets,
is less affected.

3.4 Chord Detection

Chord detection is concerned with the transcription of the
chord sequence in a piece of music. We test two different
chord detection tools: Chordino 8 [15] and HPA 9 [17].
Chordino uses NNLS Chroma as a low-level feature, then
matches manually defined chord templates to the chroma.
Chords are modelled as hidden states in a hidden Markov
model, and smoothing is achieved using Viterbi-decoding.
HPA uses the same basic architecture, with some distinct
differences: a beat-quantised, perceptually-inspired chroma
representation (HPA chroma); a more complex probabilistic
model that involves key and bass context; machine-learned
chord profiles and transition parameters.

We continue to use the 180 songs by the Beatles from
our beat-tracking experiment, as chord annotations are also
available for them [10]. The chord detection outputs are

8
http://isophonics.net/nnls-chroma, Version 0.2.1

9
https://patterns.enm.bris.ac.uk/

hpa-software-package, Version 1.0

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

HP 50
HP 10

0

HP 20
0

HP 40
0

HP 80
0

Chordino
HPA

Figure 7: Chord detection performance: High-pass filter
degradations.

evaluated by calculating the relative correct overlap for
every song using a MIREX-style major/minor scheme [15].

Figure 6 shows box-and-whisker plots of the song-wise
results by degradation and method. For the original au-
dio and most degradations, HPA consistently outperforms
Chordino, possibly due to its advanced exploitation of musi-
cal context and machine learning. Unlike the beat-trackers,
both chord detection methods are relatively robust to the
Live Recording degradation, with medians dropping less
than 10 percentage points: Chordino 0.74 (original: 0.80),
HPA: 0.75 (original: 0.84). Instead, they falter on the
Smartphone Playback degradation: Chordino 0.67 (original:
0.80), HPA: 0.36 (original: 0.84). In order to understand
whether this drop was caused by the degradation’s high-
pass characteristic (compare Section 3.2), we calculated
five further degradations using the High-pass Filter degra-
dation unit with the stop band edge parameter set to 50,
100, 200, 400 and 800 Hz, respectively. Figure 7 shows that
the methods react very differently. The Chordino method
remains relatively robust with the lowest median, 0.73, for
a 400Hz stop band edge. The HPA method’s advantage over
Chordino is maintained for the 50Hz filter, but increasingly
fails for higher cutoff frequencies with median values of
0.60 (200Hz), 0.29 (400Hz) and 0.05 (800Hz). In order
to locate the reason for the strong drop-off, we studied the
HPA chroma feature. Figure 8 shows an example of how the
high-pass filter strongly affects the character of the feature,
obfuscating the clear C major and A minor patterns.

C

D

E
F

G

A

B

original 400Hz High-pass

time time

Figure 8: HPA chroma for the original and a high-pass
filtered version of a snippet from ‘Misery’ by the Beatles.

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Chordino
HPA

Figure 6: Chord detection performance: Real World Degra-
dations

the final beat estimate. Due to its dependence on onsets we
would expect BeatRoot to be particularly susceptible to the
Live setting (see Section 3.2).

We prepared 180 songs by the Beatles by degrading
them using the Real World Degradations, resulting in 1260
wav files. Beats were extracted with both beat-trackers. We
used a ±70ms tolerance window to calculate the F measure
for every song against human annotated ground-truth [14].
Figure 5 shows box-and-whisker plots of the F measure
distributions, by degradation and beat-tracking method. For
the original audio and most of the Real World Degradations,
both beat-tracking methods show good performance, with
median F measures always exceeding 0.85. With similar
medians and inter-quartile ranges neither method has a clear
advantage. The obvious exception is the Live Recording
degradation, where the median F measure of both methods
is substantially lower. BeatRoot: 0.65 (original: 0.92);
Davies’s: 0.77 (original: 0.94). As explained in the case
of score-to-audio alignment (Section 3.2), the likely cause
are spurious onsets introduced by the impulse response; the
Davies beat-tracker, which does not work on discrete onsets,
is less affected.

3.4 Chord Detection

Chord detection is concerned with the transcription of the
chord sequence in a piece of music. We test two different
chord detection tools: Chordino 8 [15] and HPA 9 [17].
Chordino uses NNLS Chroma as a low-level feature, then
matches manually defined chord templates to the chroma.
Chords are modelled as hidden states in a hidden Markov
model, and smoothing is achieved using Viterbi-decoding.
HPA uses the same basic architecture, with some distinct
differences: a beat-quantised, perceptually-inspired chroma
representation (HPA chroma); a more complex probabilistic
model that involves key and bass context; machine-learned
chord profiles and transition parameters.

We continue to use the 180 songs by the Beatles from
our beat-tracking experiment, as chord annotations are also
available for them [10]. The chord detection outputs are

8
http://isophonics.net/nnls-chroma, Version 0.2.1

9
https://patterns.enm.bris.ac.uk/

hpa-software-package, Version 1.0

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

HP 50
HP 10

0

HP 20
0

HP 40
0

HP 80
0

Chordino
HPA

Figure 7: Chord detection performance: High-pass filter
degradations.

evaluated by calculating the relative correct overlap for
every song using a MIREX-style major/minor scheme [15].

Figure 6 shows box-and-whisker plots of the song-wise
results by degradation and method. For the original au-
dio and most degradations, HPA consistently outperforms
Chordino, possibly due to its advanced exploitation of musi-
cal context and machine learning. Unlike the beat-trackers,
both chord detection methods are relatively robust to the
Live Recording degradation, with medians dropping less
than 10 percentage points: Chordino 0.74 (original: 0.80),
HPA: 0.75 (original: 0.84). Instead, they falter on the
Smartphone Playback degradation: Chordino 0.67 (original:
0.80), HPA: 0.36 (original: 0.84). In order to understand
whether this drop was caused by the degradation’s high-
pass characteristic (compare Section 3.2), we calculated
five further degradations using the High-pass Filter degra-
dation unit with the stop band edge parameter set to 50,
100, 200, 400 and 800 Hz, respectively. Figure 7 shows that
the methods react very differently. The Chordino method
remains relatively robust with the lowest median, 0.73, for
a 400Hz stop band edge. The HPA method’s advantage over
Chordino is maintained for the 50Hz filter, but increasingly
fails for higher cutoff frequencies with median values of
0.60 (200Hz), 0.29 (400Hz) and 0.05 (800Hz). In order
to locate the reason for the strong drop-off, we studied the
HPA chroma feature. Figure 8 shows an example of how the
high-pass filter strongly affects the character of the feature,
obfuscating the clear C major and A minor patterns.

C

D

E
F

G

A

B

original 400Hz High-pass

time time

Figure 8: HPA chroma for the original and a high-pass
filtered version of a snippet from ‘Misery’ by the Beatles.

Friday, 1 November 13

Results IV — Chord
recognition

compare two methods:
Chordino, HPA

HPA usually better,
Chordino more robust
on “Phone Play”

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Chordino
HPA

Figure 6: Chord detection performance: Real World Degra-
dations

the final beat estimate. Due to its dependence on onsets we
would expect BeatRoot to be particularly susceptible to the
Live setting (see Section 3.2).

We prepared 180 songs by the Beatles by degrading
them using the Real World Degradations, resulting in 1260
wav files. Beats were extracted with both beat-trackers. We
used a ±70ms tolerance window to calculate the F measure
for every song against human annotated ground-truth [14].
Figure 5 shows box-and-whisker plots of the F measure
distributions, by degradation and beat-tracking method. For
the original audio and most of the Real World Degradations,
both beat-tracking methods show good performance, with
median F measures always exceeding 0.85. With similar
medians and inter-quartile ranges neither method has a clear
advantage. The obvious exception is the Live Recording
degradation, where the median F measure of both methods
is substantially lower. BeatRoot: 0.65 (original: 0.92);
Davies’s: 0.77 (original: 0.94). As explained in the case
of score-to-audio alignment (Section 3.2), the likely cause
are spurious onsets introduced by the impulse response; the
Davies beat-tracker, which does not work on discrete onsets,
is less affected.

3.4 Chord Detection

Chord detection is concerned with the transcription of the
chord sequence in a piece of music. We test two different
chord detection tools: Chordino 8 [15] and HPA 9 [17].
Chordino uses NNLS Chroma as a low-level feature, then
matches manually defined chord templates to the chroma.
Chords are modelled as hidden states in a hidden Markov
model, and smoothing is achieved using Viterbi-decoding.
HPA uses the same basic architecture, with some distinct
differences: a beat-quantised, perceptually-inspired chroma
representation (HPA chroma); a more complex probabilistic
model that involves key and bass context; machine-learned
chord profiles and transition parameters.

We continue to use the 180 songs by the Beatles from
our beat-tracking experiment, as chord annotations are also
available for them [10]. The chord detection outputs are

8
http://isophonics.net/nnls-chroma, Version 0.2.1

9
https://patterns.enm.bris.ac.uk/

hpa-software-package, Version 1.0

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

HP 50
HP 10

0

HP 20
0

HP 40
0

HP 80
0

Chordino
HPA

Figure 7: Chord detection performance: High-pass filter
degradations.

evaluated by calculating the relative correct overlap for
every song using a MIREX-style major/minor scheme [15].

Figure 6 shows box-and-whisker plots of the song-wise
results by degradation and method. For the original au-
dio and most degradations, HPA consistently outperforms
Chordino, possibly due to its advanced exploitation of musi-
cal context and machine learning. Unlike the beat-trackers,
both chord detection methods are relatively robust to the
Live Recording degradation, with medians dropping less
than 10 percentage points: Chordino 0.74 (original: 0.80),
HPA: 0.75 (original: 0.84). Instead, they falter on the
Smartphone Playback degradation: Chordino 0.67 (original:
0.80), HPA: 0.36 (original: 0.84). In order to understand
whether this drop was caused by the degradation’s high-
pass characteristic (compare Section 3.2), we calculated
five further degradations using the High-pass Filter degra-
dation unit with the stop band edge parameter set to 50,
100, 200, 400 and 800 Hz, respectively. Figure 7 shows that
the methods react very differently. The Chordino method
remains relatively robust with the lowest median, 0.73, for
a 400Hz stop band edge. The HPA method’s advantage over
Chordino is maintained for the 50Hz filter, but increasingly
fails for higher cutoff frequencies with median values of
0.60 (200Hz), 0.29 (400Hz) and 0.05 (800Hz). In order
to locate the reason for the strong drop-off, we studied the
HPA chroma feature. Figure 8 shows an example of how the
high-pass filter strongly affects the character of the feature,
obfuscating the clear C major and A minor patterns.

C

D

E
F

G

A

B

original 400Hz High-pass

time time

Figure 8: HPA chroma for the original and a high-pass
filtered version of a snippet from ‘Misery’ by the Beatles.

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Chordino
HPA

Figure 6: Chord detection performance: Real World Degra-
dations

the final beat estimate. Due to its dependence on onsets we
would expect BeatRoot to be particularly susceptible to the
Live setting (see Section 3.2).

We prepared 180 songs by the Beatles by degrading
them using the Real World Degradations, resulting in 1260
wav files. Beats were extracted with both beat-trackers. We
used a ±70ms tolerance window to calculate the F measure
for every song against human annotated ground-truth [14].
Figure 5 shows box-and-whisker plots of the F measure
distributions, by degradation and beat-tracking method. For
the original audio and most of the Real World Degradations,
both beat-tracking methods show good performance, with
median F measures always exceeding 0.85. With similar
medians and inter-quartile ranges neither method has a clear
advantage. The obvious exception is the Live Recording
degradation, where the median F measure of both methods
is substantially lower. BeatRoot: 0.65 (original: 0.92);
Davies’s: 0.77 (original: 0.94). As explained in the case
of score-to-audio alignment (Section 3.2), the likely cause
are spurious onsets introduced by the impulse response; the
Davies beat-tracker, which does not work on discrete onsets,
is less affected.

3.4 Chord Detection

Chord detection is concerned with the transcription of the
chord sequence in a piece of music. We test two different
chord detection tools: Chordino 8 [15] and HPA 9 [17].
Chordino uses NNLS Chroma as a low-level feature, then
matches manually defined chord templates to the chroma.
Chords are modelled as hidden states in a hidden Markov
model, and smoothing is achieved using Viterbi-decoding.
HPA uses the same basic architecture, with some distinct
differences: a beat-quantised, perceptually-inspired chroma
representation (HPA chroma); a more complex probabilistic
model that involves key and bass context; machine-learned
chord profiles and transition parameters.

We continue to use the 180 songs by the Beatles from
our beat-tracking experiment, as chord annotations are also
available for them [10]. The chord detection outputs are

8
http://isophonics.net/nnls-chroma, Version 0.2.1

9
https://patterns.enm.bris.ac.uk/

hpa-software-package, Version 1.0

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

HP 50
HP 10

0

HP 20
0

HP 40
0

HP 80
0

Chordino
HPA

Figure 7: Chord detection performance: High-pass filter
degradations.

evaluated by calculating the relative correct overlap for
every song using a MIREX-style major/minor scheme [15].

Figure 6 shows box-and-whisker plots of the song-wise
results by degradation and method. For the original au-
dio and most degradations, HPA consistently outperforms
Chordino, possibly due to its advanced exploitation of musi-
cal context and machine learning. Unlike the beat-trackers,
both chord detection methods are relatively robust to the
Live Recording degradation, with medians dropping less
than 10 percentage points: Chordino 0.74 (original: 0.80),
HPA: 0.75 (original: 0.84). Instead, they falter on the
Smartphone Playback degradation: Chordino 0.67 (original:
0.80), HPA: 0.36 (original: 0.84). In order to understand
whether this drop was caused by the degradation’s high-
pass characteristic (compare Section 3.2), we calculated
five further degradations using the High-pass Filter degra-
dation unit with the stop band edge parameter set to 50,
100, 200, 400 and 800 Hz, respectively. Figure 7 shows that
the methods react very differently. The Chordino method
remains relatively robust with the lowest median, 0.73, for
a 400Hz stop band edge. The HPA method’s advantage over
Chordino is maintained for the 50Hz filter, but increasingly
fails for higher cutoff frequencies with median values of
0.60 (200Hz), 0.29 (400Hz) and 0.05 (800Hz). In order
to locate the reason for the strong drop-off, we studied the
HPA chroma feature. Figure 8 shows an example of how the
high-pass filter strongly affects the character of the feature,
obfuscating the clear C major and A minor patterns.

C

D

E
F

G

A

B

original 400Hz High-pass

time time

Figure 8: HPA chroma for the original and a high-pass
filtered version of a snippet from ‘Misery’ by the Beatles.

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

Liv
e

Rad
io

Pho
ne

Play

Pho
ne

Rec

MP3
Viny

l

Chordino
HPA

Figure 6: Chord detection performance: Real World Degra-
dations

the final beat estimate. Due to its dependence on onsets we
would expect BeatRoot to be particularly susceptible to the
Live setting (see Section 3.2).

We prepared 180 songs by the Beatles by degrading
them using the Real World Degradations, resulting in 1260
wav files. Beats were extracted with both beat-trackers. We
used a ±70ms tolerance window to calculate the F measure
for every song against human annotated ground-truth [14].
Figure 5 shows box-and-whisker plots of the F measure
distributions, by degradation and beat-tracking method. For
the original audio and most of the Real World Degradations,
both beat-tracking methods show good performance, with
median F measures always exceeding 0.85. With similar
medians and inter-quartile ranges neither method has a clear
advantage. The obvious exception is the Live Recording
degradation, where the median F measure of both methods
is substantially lower. BeatRoot: 0.65 (original: 0.92);
Davies’s: 0.77 (original: 0.94). As explained in the case
of score-to-audio alignment (Section 3.2), the likely cause
are spurious onsets introduced by the impulse response; the
Davies beat-tracker, which does not work on discrete onsets,
is less affected.

3.4 Chord Detection

Chord detection is concerned with the transcription of the
chord sequence in a piece of music. We test two different
chord detection tools: Chordino 8 [15] and HPA 9 [17].
Chordino uses NNLS Chroma as a low-level feature, then
matches manually defined chord templates to the chroma.
Chords are modelled as hidden states in a hidden Markov
model, and smoothing is achieved using Viterbi-decoding.
HPA uses the same basic architecture, with some distinct
differences: a beat-quantised, perceptually-inspired chroma
representation (HPA chroma); a more complex probabilistic
model that involves key and bass context; machine-learned
chord profiles and transition parameters.

We continue to use the 180 songs by the Beatles from
our beat-tracking experiment, as chord annotations are also
available for them [10]. The chord detection outputs are

8
http://isophonics.net/nnls-chroma, Version 0.2.1

9
https://patterns.enm.bris.ac.uk/

hpa-software-package, Version 1.0

re
la

tiv
e

co
rre

ct
 o

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

 O
rig

ina
l

HP 50
HP 10

0

HP 20
0

HP 40
0

HP 80
0

Chordino
HPA

Figure 7: Chord detection performance: High-pass filter
degradations.

evaluated by calculating the relative correct overlap for
every song using a MIREX-style major/minor scheme [15].

Figure 6 shows box-and-whisker plots of the song-wise
results by degradation and method. For the original au-
dio and most degradations, HPA consistently outperforms
Chordino, possibly due to its advanced exploitation of musi-
cal context and machine learning. Unlike the beat-trackers,
both chord detection methods are relatively robust to the
Live Recording degradation, with medians dropping less
than 10 percentage points: Chordino 0.74 (original: 0.80),
HPA: 0.75 (original: 0.84). Instead, they falter on the
Smartphone Playback degradation: Chordino 0.67 (original:
0.80), HPA: 0.36 (original: 0.84). In order to understand
whether this drop was caused by the degradation’s high-
pass characteristic (compare Section 3.2), we calculated
five further degradations using the High-pass Filter degra-
dation unit with the stop band edge parameter set to 50,
100, 200, 400 and 800 Hz, respectively. Figure 7 shows that
the methods react very differently. The Chordino method
remains relatively robust with the lowest median, 0.73, for
a 400Hz stop band edge. The HPA method’s advantage over
Chordino is maintained for the 50Hz filter, but increasingly
fails for higher cutoff frequencies with median values of
0.60 (200Hz), 0.29 (400Hz) and 0.05 (800Hz). In order
to locate the reason for the strong drop-off, we studied the
HPA chroma feature. Figure 8 shows an example of how the
high-pass filter strongly affects the character of the feature,
obfuscating the clear C major and A minor patterns.

C

D

E
F

G

A

B

original 400Hz High-pass

time time

Figure 8: HPA chroma for the original and a high-pass
filtered version of a snippet from ‘Misery’ by the Beatles.

Friday, 1 November 13

Summary
Audio Degradation Toolbox offers

easy-to-use degradations

more comprehensive than other existing toolboxes

ground truth time-line transform to evaluate on time-
warping degradations

Results show: ADT is useful to detect strengths and
weaknesses of MIR methods

For paper, audio examples, source code:
http://code.soundsoftware.ac.uk/projects/audio-
degradation-toolbox

Friday, 1 November 13

https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox
https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox
https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox
https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox

What’s up next?

convince everyone to use the ADT :)

work with it ourselves...

degraded audio as additional training data

affect of degradation on human ground truth labelling

Friday, 1 November 13

