

SECONDA UNIVERSITA’ DEGLI STUDI DI NAPOLI

Dipartimento di Ingegneria Industriale e dell'Informazione

LAUREA MAGISTRALE

IN

INGEGNERIA ELETTRONICA

MPEG-A Interactive Music Application Format (IM AF) Encoder

- Features Development -

Relatore:

Ch.mo Prof.

Gianmarco Romano

Candidato:

Costantino Taglialatela

Matr. A17 000 028

Anno Accademico 2012-2013

Alla mia famiglia,

per tutto il sostegno ricevuto.

Al Prof. Gianmarco Romano,

per la sua fiducia e per i preziosi consigli

ricevuti durante tutto il percoso di studio.

Ad Antonella,

per la pazienza e l’amore,

per me essenziali in tutti questi anni.

ACKNOWLEDGEMENT

The author acknowledges that this work has been done during his visit at the Centre for

Digital Music (C4DM) - School of Electronic Engineering and Computer Science,

Queen Mary University of London (EECS-QMUL).

His deepest gratitude goes to Prof. Panos Kudumakis for his supervision and to Dr. Mark

Plumbley for the invaluable opportunity of the visit in C4DM.

The author would also like to express his thankfulness to Chris Cannam and Luis

Figueira for their assistance and the precious suggestions.

The first version of the IM AF Encoder has been proposed by Eugenio Oñate (EECS-

QMUL) in August 2012. This work is based on his proof of concept, in collaboration

with Jesús Corral García (E.T.S.I. Telecomunicación, Dpt. Ingeniería de

Comunicaciones, Universidad de Málaga).

INDEX

 4

INDEX

INTRODUCTION ... 6

CHAPTER I
BACKGROUND RESEARCH .. 9

1.1 Interactive music services and file formats.. 10

1.1.1 Perform A Track ... 10

1.1.2 Music 2.0 .. 11

1.1.3 MOGG .. 13

1.1.4 Song Galaxy.. 13

1.1.5 MXP4 .. 14

1.1.6 iXMF ... 15

1.1.7 MOD ... 16

1.1.8 IEEE 1599 .. 16

1.2 Connections with IM AF ... 18

CHAPTER II
MPEG-A INTERACTIVE MUSIC APPLICATION FORMAT (IM AF) STANDARD 19

2.1 Interactive music services and file formats.. 20

2.2 File structure .. 23

2.2.1 ISO Based Media File Format ... 23

2.2.2 Structure for a single type file .. 25

2.2.3 Supported standards ... 26

2.3 Brand identification ... 27

2.4 Hierarchical structure of audio tracks .. 29

2.5 Preset information .. 30

2.6 Interactivity rules ... 33

2.6.1 Selection Rules.. 34

2.6.2 Mixing Rules ... 36

2.7 Additional media data .. 37

2.7.1 Still picture ... 37

2.7.2 Timed text ... 38

2.8 Metadata... 39

2.9 Compatibility with legacy players ... 39

INDEX

 5

CHAPTER III
THE IM AF ENCODER .. 40

3.1 Useful tools: Mp4 Explorer and Mp4 Browser ... 41

3.2 Brand definition ... 42

3.3 Multitrack Audio.. 43

3.4 Groups .. 45

3.5 Presets .. 46

3.6 Rules .. 49

3.7 JPEG Still Pictures ... 50

3.8 3GPP Timed Text .. 51

3.9 Metadata... 54

3.10 Software Version Control .. 55

CHAPTER IV
RESULTS ... 56

4.1 Creation of an IM AF file .. 57

4.2 Conformance points ... 57

4.3 Conformance files .. 59

4.4 Playing the files ... 61

CHAPTER V
INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS 64

5.1 Introduction to Sonic Visualiser and VAMP plugins 65

5.2 The Qt library... 66

5.3 Interface development.. 68

5.4 Scenarios .. 71

5.5 Future developments .. 73

CONCLUSIONS ... 74

APPENDIX ... 77

REFERENCES ... 86

INTRODUCTION

 6

INTRODUCTION

The fact that the MP3 file format reigns supreme in the music market is not

news. Despite having its market position constantly “attacked” by new formats

such as AAC, Ogg Vorbis and so on, nothing has changed so far [16].

In fact, users continue to play the part of “passive listeners”, in disagreement

with the interactivity trend brought by recent devices, such as smartphones and

tablets. Keeping in mind the continuous development of apps like Glee

Karaoke and I am T-Pain [23], and the success of some videogames like

Guitar Hero [24] and Rock Band [25], we can understand that there has been a

deeply change in the way consumers perceive music nowadays.

So far, listeners didn’t have the opportunity to modify the songs and adapt

them to their taste unless they had in their disposition a recording studio with

expensive gear and the multiple tracks which form the songs.

In this context, new interactive music services have emerged with the aim of

enhancing the listeners’ experience. However, each service uses its own

proprietary file format and this has made it difficult to boost the global

interactive music market. A standardized file format is inevitably required to

provide the interoperability between various interactive music players and

interactive music songs and albums [15].

INTRODUCTION

 7

This issue is addressed in a recently published standard by ISO/IEC Moving

Picture Experts Group (MPEG) known as MPEG-A: Interactive Music

Application Format (IM AF) [1]. It is a multitrack based audio file format, that

means that it can contain separate sound elements for a song (like individual

tracks for drums, guitar, vocals, etc.). It allows users to modify the mixing style

of the song, by changing the volume of each music instrument separately.

Other multitrack and interactive formats have already been available, e.g.,

MOGG [19], IEEE 1599 [17] and iXMF [11]. The novelty of IM AF is on

additional media data that enrich the user’s interaction space, like timed text

synchronized with audio tracks, which can represent the lyrics or the chords of

a song, and images related to the song, album and artist. Another important

feature is the introduction of presets (e.g., a karaoke or rhythmic version of the

song offered by the music producer) and rules constraining the user mixing

result to preserve the artistic creation of the composer.

The IM AF specifications come together with a reference software (a non-

optimized) decoder and conformance files. In this way MPEG enables

companies to build IM AF compliant encoders and offer associated services

and products to market. However no one has publicly released an

implementation for an encoder yet, although commercial services exist [14].

This work comes to fill in this gap, proposing an implementation of the very

first full-fledged codec compliant to the IM AF file format.

Availability of software that allows creating and playing IM AF files could

revitalize the music market. New on-line music forums and social networks

could be handy from this point of view: personal mixes of songs could be

exported and easily shared between users, having lighter files that contain only

information about the mixing parameters while the audio tracks can be made

INTRODUCTION

 8

available through various on-line music services. Each audio track could even

be replaced by users’ personal recordings, encouraging people to develop

singing and music instruments playing skills through active learning.

In particular, the rest of this thesis is structured as follows: an overview about

previously released multitrack/interactive music files is presented in Chapter 1,

together with a comparison of these formats with IM AF. The IM AF standard

and the file structure are described in Chapter 2, while the implementation of

the encoder is described in Chapter 3. In Chapter 4, some example IM AF

files are presented as the result of the work, to demonstrate the compliancy of

the encoder to the standard. Furthermore, Chapter 5 describes the integration

of the developed encoder in Sonic Visualiser [9] (an application for viewing

and analysing the contents of music audio files) and shows some use-cases of

plugins when the IM AF support is provided. Some final remarks are presented

in Chapter 6.

A first version of an IM AF Encoder was released by the Centre for Digital

Music (C4DM) of the Queen Mary University of London [26], as a proof of

concept, with basic capabilities and allowing the inclusion of only audio tracks

in the resulting IM AF file.

This work is a continuation of the previous one about the IM AF Encoder and

dealt with the following tasks:

- Add pictures to be displayed during the playing of a song;

- Add timed-text as lyrics (supported by Jesus Corral Garcia);

- Inclusion of groups, presets and rules as described by the standard;

- Test of encoder’s full compliancy to the standard;

- Provide IM AF support to Sonic Visualiser (export only).

CHAPTER I BACKGROUND RESEARCH

 9

CHAPTER I

BACKGROUND RESEARCH

Introduction

Having a look at previous attempts to create an interactive music file is useful

to understand the context in which the IM AF file format is born.

In this section, some already available interactive and multitrack audio file

formats for the digital music market are briefly described. Some of them were

released by the same creators of the Interactive Music Application Format.

Many of the services and file formats that will be mentioned in the section are

only known to a limited circle of users. Also some of them are not survived to

their test period, due to various policies of the companies and the market.

IM AF is a pretty young standard and it has potential to have a better fortune.

CHAPTER I BACKGROUND RESEARCH

 10

1.1 Interactive music services and file formats

The consumer‟s continuous search for different way to enjoy their favourite

music incites developers to create new interesting services. No more than 5

years ago many different interactive music services came into the world, each

one using proprietary file formats with dissimilar features and no compatibility

between them.

Two companies in particular, iKlax Media [14] and Audizen [27], gave life to

two music services with the aim of revitalizing the music market. In particular,

Audizen sponsored its format with the ambitious commercial title of “Music

2.0”, promising a completely and dramatically changed approach to the audio

multimedia experience overall. After a test period for their own services, iKlax

and Audizen decided to join forces for the definition of a new standard format,

which is the IM AF.

1.1.1 Perform A Track

Perform A Track is the interactive music player based on the iKlax multi-track

technology [14]. It is possible to buy and download songs from the website and

then use them with the player to shut down one or more instruments, listening

to the result live. Users can change each stem track volume and then save their

mix for a future playback. Mix savings are unlimited.

iKlax is a French research group that in collaboration with LaBRI (the

Laboratoire Bordelais de Recherche en Informatique from France) developed

the file format with the extension „.iklax‟; Perform A Track is the only one

software that is able to play such kind of file. It is available for iPhone/iPad

and PC and it is a sort of evolution of the first iKlax player for personal

computer.

CHAPTER I BACKGROUND RESEARCH

 11

The online songs database is not wide and the maturity level of the software is

low yet. Moreover, despite iKlax Media is one of the major contributor to the

creation of the IM AF (they introduced the concepts of presets, rules and

groups, and the Rule Analyser library used in the reference software), Perform

A Track is not yet compliant with the standard and still uses iKlax format;

actually, the possibility of having lyrics and chords as timed text data in a song

has been recently announced and yet to be introduced. These could be the

reasons why the service is still not so popular.

Figure 1.1 - "Perform A Track" music player interface for PC and iPhone/iPad.

1.1.2 Music 2.0

The Audizen company and the Korean governmental research institute ETRI

(Electronics and Telecommunications Research Institute) started the “Music

2.0” service in 2008, based on the MT9 file format [28].

The distinctive feature of MT9 format is that to be a multitrack audio files with

a limited number of 6 tracks (each channel is dedicated to voice, chorus, piano,

guitar, bass and drum); the idea was to allow the file format to be easily played

on devices with limited processing capabilities, such as mobile phones. In fact,

CHAPTER I BACKGROUND RESEARCH

 12

Samsung Electronics and LG Electronics were both interested in equipping

their mobile phones with an MT9 player, but this project was later abandoned,

due probably to the choice of the Motion Picture Experts Group (MPEG), the

international organization of the digital music and video industry, to make of

the MT9 format one of the basis for a new digital music standard [29].

iKlax and ETRI technologies had been used as references for the IM AF

standard, mixing the best features of the two file formats (presets, rules,

groups and the Rule Analyser library from iKlax, timed text and pictures from

MT9). After the first release of the IM AF standard in the late 2010, Audizen

closed his music service, probably with the aim of creating a new one based on

the new file format.

However, nothing is happened so far: Audizen seems to be silent and iKlax

still uses its own proprietary file format, even if IM AF is now a fully-fledged

standard.

Figure 1.2 - "Music 2.0" interactive music player by Audizen.

CHAPTER I BACKGROUND RESEARCH

 13

1.1.3 MOGG

The MOGG format is a multitrack variant of the Ogg Vorbis [19], an open-

source container file format that can multiplex a number of independent

streams for audio, video, text and metadata.

A MOGG file is essentially a container file with multiple Ogg files in it. It‟s

not a very popular file format, it comes from the open-source audio community

and it became more known after that many songs ripped from the Rock Band

videogame had been available on internet in this format.

The file format can be played only from one player called Audacity [30], an

open-source digital audio program that can playback and record multiple

tracks.

1.1.4 Song Galaxy

Song Galaxy is a web service specialised in the selling of backing tracks for

singers and musicians [31]. In August 2008, they introduced the Multi Tracker

software, an easy-to-use program which uses multi track files in up to 16

individual tracks, with each instrument or instrument group on a separate track.

The file format used by this software is called MTF (Multi Track File) and is

very similar to the MOGG format (every individual stem is encoded in Ogg

format).

The main features of Multi Tracker are the possibility to transpose songs up to

+/- 12 semi-tones, save settings in a project and export the mix as a Wave or

MP3 file, allowing users to sing or play along the song.

CHAPTER I BACKGROUND RESEARCH

 14

It is probably the only one among the mentioned services that is still active and

releases recent songs in multitrack format.

Figure 1.3 - "Multi Tracker" player by Song Galaxy.

1.1.5 MXP4

Another pioneer of interactive music formats is the MXP4, developed by the

same name MXP4 company, based in Paris and founded in 2008 [32]. The

MXP4 format allows to package multimedia content in a single file: audio and

video streaming, biographical information about the artist and concert dates.

The MXP4 applications also offer interactive features that allow users to play,

remix and sing on different tracks, sharing the on social networks.

Despite being an interesting project, in the end of 2010, the company changed

its activity and decided to focus on the development of musical social games

on Facebook, like Bopler [33] (very similar to Guitar Hero and Rock Band

videogames).

CHAPTER I BACKGROUND RESEARCH

 15

1.1.6 iXMF

Interactive XMF is a file format that contains audio content for adaptive audio,

introduced by the Interactive Audio Special Interest Group (IASIG) and based

on the open-standard XMF (eXtensible Music Format) [11].

XMF is a low-overhead, meta file format that includes collections of data

resources in one or more formats into a single file; it was developed by the

MIDI Manufacturers Association and published in October of 2001.

iXMF is intended as an open cross-platform standard to be used by audio

artists, in order to bundle audio content files with general information and

audio implementation instructions. It is basically a wrapper format for MIDI

files, Downloadable Sounds (DLS), and WAVE waveform data.

The file has an internal structure of “folders” and “files”, like a computer file

system. It is based on cue sheets, that are lists of events corresponding to

predefined actions; an event can be triggered at a particular moment in time.

An iXMF file may be described in terms of the following abstractions, all

represented as data structures stored inside the file:

- An iXMF file is a collection of any number of named Cues;

- A Cue is a collection of Media Chunks, plus some Scripts (rules

governing how they are played) ;

- A Media Chunk is a contiguous region in a playable Media File.

Initially, it was meant to be highly beneficial for the game industry: the file

format had the backing of Sony Computer Entertainment and it was nearly

adopted as one of the supported formats for the PlayStation3 games, but in the

end the project was abandoned. Anyway, it may be used in any interactive

audio application.

CHAPTER I BACKGROUND RESEARCH

 16

This file format put artistic control into the hands of the artists, keeping

programmers from having to make artistic decisions, eliminate rework for

porting to new platforms, and reduce production time, cost, and stress.

1.1.7 MOD

A sort of forefather of the iXMF is the MOD file format [34]. It is a computer

file format used primarily to represent music, and was the first module file

format, used on Amiga system in the late 1980s. This format originated a

family of music file formats called “Module files” that became very popular in

the Demoscene (a computer-art subculture specialised in audio-visual

presentations).

A MOD file contains a set of instruments in the form of samples, a number of

patterns indicating how and when the samples are to be played, and a list of

what patterns to play in what order. A pattern is typically represented in a

sequencer user interface as a table with one column per channel

1.1.8 IEEE 1599

IEEE 1599 encodes music with XML symbols aimed at a comprehensive

description of music information [17]. This format has been mainly developed

at LIM (Laboratorio di Informatica Musicale, Università degli Studi di

Milano) and since September 2008, the format is an international standard.

It offers two original characteristics compared to existing music standards:

- the encoding is in the form of symbols that can be read both by

machines and humans;

- provides additional information surrounding a piece of music.

CHAPTER I BACKGROUND RESEARCH

 17

All the aspects of music (such as audio and sound, graphical representation,

historical data and scores) are synchronized within a multi-layered

environment; layers can be accessed both individually and as parts of a whole.

The format consists of six layers that communicate with each other, but there

can be multiple instances of the same layer type. Figure 1.4 illustrates the

interaction between layers, denoted to as:

- General: contains metadata information;

- Logic: describes the score symbols;

- Structural: defines the interactions between musical objects;

- Notational: graphical representation of the score;

- Performance: computer-based descriptions of a musical performance;

- Audio: digital audio recording.

Figure 1.4 - Multi-layered structure of the IEEE 1599 format.

CHAPTER I BACKGROUND RESEARCH

 18

1.2 Connections with IM AF

Each one of the above mentioned formats stand out for a different feature.

Despite being developed as a means to organize and describe synchronized

streams of information for different applications, a correlation between some

of their features can still be found, in order to show the connections with the

IM AF file format.

Figure 1.5 - Relationships between features of different file formats and IM AF

Figure 1.5 shows the relationship between Mogg, MT9 (Audizen) and iKlax

file formats with IM AF. The other interactive file formats have peculiarities

that make them different from the IM AF, and for this reason a comparison

doesn‟t easily stand out. An interesting feature that can be supported by IM AF

in a possible future improvement of the standard could be the inclusion of

scores, like in the IEEE 1599 format, instead of the simple transcription of

chords to display on the timed text track. Option to display videos instead of

pictures could also be fascinating, as none of mentioned formats does it.

IM AF

MULTITRACK

PRESETS

RULES

GROUPS

TIMED TEXT

PICTURES

MOGG

CHAPTER II THE MPEG-A IM AF STANDARD

 19

CHAPTER II

THE MPEG-A INTERACTIVE MUSIC APPLICATION

FORMAT (IM AF) STANDARD

Introduction

In this section the features of the IM AF file format are explained in detail, in

order to provide a complete understanding of the organization and the playback

of an IM AF file.

The ISO/IEC Moving Picture Experts Group (MPEG) issued the new standard

in 2010 [1], following an amendment published in the late 2012 including extra

features [2-3]. The standard‟s specifications come together with a reference

player and few conformance files, enabling developers to create their own

software based on the new file format.

The standard embraces different types of media data, especially multiple audio

tracks with interactivity data. The structure of the IM AF file is built around

the MPEG-4 ISO Based Media File Format standard [4]; some improvements

had been introduced to enable interactive control over the media data, like

presets, rules and groups. Furthermore, additional media like pictures and

timed text are included to enrich the user‟s interaction space.

CHAPTER II THE MPEG-A IM AF STANDARD

 20

2.1 Interactive music services and file formats

There is no better way to understand the possibilities offered by IM AF than

exploring the interactivity of the reference software. Using the interactive

music player provided with the standard‟s specifications, users can play a song

and handle the tracks that compose it, mainly by editing the volume values.

Figure 2.1 - IM AF player user interface.

CHAPTER II THE MPEG-A IM AF STANDARD

 21

There are two different modes to interact with the song: the Preset-Mix mode

and the User-Mix mode.

In the Preset-Mix mode, users select one among the presets stored in the IM

AF file. A preset contains predefined information related to the volume of each

track in a song. Therefore, giving to a track “zero” volume value, excludes that

track from being played in the preset. Some examples for presets could be:

 Default preset: the original mix by the music producer;

 Karaoke preset: all the tracks except the vocal track are played;

 Acoustic preset: only guitar and vocal tracks are played.

In the User-Mix mode, users can control the volume of each track by means of

sliders in the player‟s interface or change their status (enabled or disabled). It

is possible to operate on single tracks or groups of them, in order to create

“live” custom mixes. Each user‟s interaction is analysed in order to check the

compatibility with the rules defined in the file. A rule is a constraint decided

by the producer and/or the artist to preserve their artistic creation (i.e., for not

completely muting the guitar solo in the song).

Then, these two associations can be now assumed:

Preset-Mix mode -> Presets

User-Mix mode -> Groups and Rules

An algorithm called Rule Analyser is used to determine compatibility between

user‟s interaction and interactivity rules. Figure 2.2 shows the block diagram

for both the Preset-mix mode and the User-mix mode. The preset selection, the

audio track/group selection and the volume change are the possible user‟s

interaction.

CHAPTER II THE MPEG-A IM AF STANDARD

 22

Figure 2.2 - Illustration of the IM AF usage modes.

The rule analyser also interacts with the mixer in order to run user actions

when they are conformed to interactivity rules. Actually, the rule analyser

consists of a rule checker and a rule solver.

The rule checker executes rule checking, and rule solver tries to find a solution

for the mix using the rule analyser library. If the compatibility is verified, then

the actions corresponding to the change of status and volume of the tracks are

performed by the Mixer.

In the other case, the rule analyser chooses the most similar valid mix

according to the user actions or it simply notifies an error if the requested

change is considered impossible to perform.

CHAPTER II THE MPEG-A IM AF STANDARD

 23

2.2 File structure

2.2.1 ISO Based Media File Format

The framework of the IM AF file is built around the MPEG-4 ISO Based

Media File Format (ISO-BMFF) standard [4]; IM AF has introduced some

improvements for interactivity control. ISO-BMFF contains the timing, the

structure and the media information for timed sequences of media data, such as

audio, video and text. A sequence of media data is called presentation. The file

structure is object-oriented: files conforming to the ISO base media file format

are formed as a series of objects, called boxes. All data is contained in boxes

and there is no other data within the file [35].

An overall structure of an ISO based media file is provided in Table 2.1.

Indentation is used to show the hierarchy of the boxes. For example, a Group

Box „grup‟ is contained in the Group Container Box „grco‟, which is included

in the Movie Box „moov‟. Not all the boxes in the table must be included in the

file. The mandatory boxes are indicated with an asterisk.

There are two different types of boxes: general boxes (simply called Boxes),

containing data and other boxes, and FullBoxes that contain only data. Every

box starts with a header defining the type and size of the box. The type is the

four character identifier of the each box as shown in the Table 2.1 (i.e., ftyp,

moov, mdat); hence it‟s a 4 bytes value (32 bits, unsigned integer). The size is

another 32 bits unsigned integer value that indicates the overall size (in bytes)

of the box, including data and other possible included boxes.

FullBoxes include in the header two more values: version and flag. The version

is an 8 bits integer value that indicates the version of the box; the flag is a 24

bits integer value whose use depends on the considered box.

CHAPTER II THE MPEG-A IM AF STANDARD

 24

* ftyp file type and compatibility

* moov container for all the metadata

 mvhd movie header, overall declarations

 trak container for an individual track or stream

* trhd track header, overall information about the track

 tref track reference container

 edts edit list container

 elst an edit list

* mdia container for the media information in a track

* mdhd media header, overall information about the media

* hdlr

handler, declares the media (handler) type

“soun” for audio data

“text” for timed text data

“hint” for protocol hint track

* minf media information container

 smhd sound media header, overall information (sound track only)

 hmhd hint media header, overall information (hint track only)

 nmhd Null media header, overall information (some tracks only)

* dinf data information box, container

* dref data reference box, declares source(s) of media data in track

* stbl sample table box, container for the time/space map

* stsd sample descriptions (codec types, initialization etc.)

* stts (decoding) time-to-sample

* stsc sample-to-chunk, partial data-offset information

 stsz sample sizes (framing)

 stz2 compact sample sizes (framing)

* stco chunk offset, partial data-offset information

 co64 64-bit chunk offset

 grco container for the groups

 grup group box, describes the structure (hierarchy)

* prco container for the presets

* prst preset box, container for the preset information

 ruco container for rules

 rusc selection rule box, container for a selection rule

 rumx mixing rule box, container for a mixing rule

 mdat media data container

 free free space

 skip free space

 meta Metadata

* hdlr handler, declares the metadata (handler) type

 dinf data information box, container

 dref data reference box, declares source(s) of metadata items

 iloc item location

 iinf item information

 xml XML container

 bxml binary XML container

 pitm primary item reference

Table 2.1- Structure of the boxes in IM AF and their description. The mandatory boxes

are marked with (*).

CHAPTER II THE MPEG-A IM AF STANDARD

 25

2.2.2 Structure for a single type file

A single type IM AF file contains single movie presentation with associated

data. A multiple file type structure can be used to support album functionality

(i.e., all the songs from a full album can be stored in one file), but this feature

transcend the purpose of this work and therefore it will be discussed at a later

stage as a possible future implementation. The Movie Box „moov‟, describes

the scene presentation. This may include one or more Track Boxes „trak‟. Each

„trak‟ box contains the description for one type of media (audio, text or image),

while the real media content is stored in the Media Data Container Box „mdat‟.

This is illustrated in Figures 2.3.

Alternatively, the „trak‟ box may define a URL (Uniform Resource Locator)

addressing where the media data are stored (i.e., on an internet web server).

Thus, IM AF files can be very light in terms of storage requirements mainly

consisted of metadata (i.e., groups, presets and rules are stored in the file;

audio tracks, text and pictures can be streamed by an internet service).

Figure 2.3 - Detailed IM AF file format structure.

CHAPTER II THE MPEG-A IM AF STANDARD

 26

2.2.3 Supported standards

The IM AF standard supports compression of the audio tracks in various

formats including PCM, MP3, AAC, and SAOC [8]. Each track in IM AF

format is stored separately from the other tracks, without cross compression on

sound signal (specific multichannel compression). This process allows a better

quality for sound.

It also supports the JPEG file format for still pictures [5], the 3GPP timed text

for lyrics [6] and MPEG-7 Multimedia Description Scheme for metadata [7].

Table 2.2 lists all the supported components of IM AF with the specification

reference of the respective component.

TYPE COMPONENT NAME ABBREVIATION SPECIFICATION

File Format ISO Base Media File Format ISO-BMFF ISO/IEC 14496-12:2008

Audio

MPEG-1 Audio Layer III MP3 ISO/IEC 11172-3:1993

MPEG-4 Audio AAC profile AAC ISO/IEC 14496-3:2005

MPEG-D SAOC Baseline profile SAOC ISO/IEC 23003-2:2010

PCM PCM -

Text JPEG Image JPEG ISO/IEC 10918-1:1994

Image 3GPP Timed Text 3GPP TT ETS 3GPP TS 26.245-2004

Metadata
MPEG-7 Multimedia

Description Scheme
MDS ISO/IEC 15938-5:2003

Table 2.2 - Supported components in IM AF.

The IM AF player provides the parsing function of the IM AF files and it plays

the components such as audio, image, timed-text and metadata. Figure 2.4

shows the architecture of the IM AF interactive music player with the

corresponding decoders/parsers for media data.

CHAPTER II THE MPEG-A IM AF STANDARD

 27

Figure 2.4 - IM AF file format structure and IM AF player architecture with the

corresponding media data decoders/parsers.

2.3 Brand identification

In order to identify the specifications to which a file based on ISO base media

file format complies, brands are used as identifiers in the file format. They are

set as four-character codes in a box named File Type Box „ftyp‟, which must be

placed in the beginning of the file. A brand might indicate the type of encoding

used, how the data of each encoding is stored, constraints and extensions that

are applied to the file, the compatibility or the intended usage of the file.

A File Type Box contains two kinds of brands. One is „major_brand‟ which

identifies the specification of the best use for the file. It is followed by

„minor_version‟, an informative 4 bytes integer for the minor version of the

major brand. The second kind of brand is „compatible_brands’, which

identifies multiple specifications to which the file complies.

Audio Data

Preset Data

Group Data

Rule Data

3GPP Timed Text

MPEG-7 Metadata

JPEG Image

IM AF Player

IM AF File

Rules Analyser

Mixer
Audio

Decoder

Text Decoder

Metadata Parser

JPEG Decoder

PRESET-MIX MODE

USER-MIX MODE

CHAPTER II THE MPEG-A IM AF STANDARD

 28

For the IM AF standard, the brand is related to the maximum number of

simultaneously decoded audio tracks and depends on the processing

capabilities of the device. Table 2.3 defines brands for each application of IM

AF. In all brands, associated data such as JPEG image, 3GPP Timed Text and

Metadata based on MPEG-7 MDS are supported and each of them may exist in

the IM AF file.

 AUDIO MAX # OF

SIMULTANEOUSLY

DECODED AUDIO

TRACKS

MAX SAMPLING

FREQUENCY/BITS
PROFILE/LEVEL APPLICATION

BRANDS AAC MP3 SAOC PCM

„im01‟ ○ ○ 4

48kHz/16bits

AAC/level 2

Mobile

„im02‟ ○ ○ 6

„im03‟ ○ ○ 8

„im04‟ ○ ○ ○ 2
AAC/level 2

SAOC Baseline/2

„im11‟ ○ ○ ○ 16 AAC/level 2

SAOC Baseline/3
Normal

„im12‟ ○ ○ ○ 2

„im21‟ ○ ○ 32 96kHz/24bits AAC/level 5 High-end

[Remark 1] The audio component data marked as “○” may exist in the file.

[Remark 2] For „im04‟ and „im12‟, simultaneously decoded audio tracks consist of tracks related to SAOC,

which are a downmix signal and SAOC bit stream. The downmix signal shall be encoded using AAC or MP3.

[Remark 3] For all brands, the maximum channel number of each track is restricted to 2 (stereo).

Table 2.3 - Brands for IM AF

Brands starting with „im0‟ are basically supporting the mobile application such

as mobile phones and portable audio player. For them, the maximum number

of audio tracks to be decoded simultaneously is limited to 4, 6, 8 and 2,

respectively, due to the limited processing power of the used devices.

Brands starting with „im1‟ are basically supporting for the general application,

such as CD (Compact Disk) and online music service, on more powerful

devices than the previous ones for „im0‟, like PC and last generation of mobile

devices.

CHAPTER II THE MPEG-A IM AF STANDARD

 29

The „im21‟ is the brand for the high-end application for professional user, like

Digital Audio Workstation (DAW). In this brand, only AAC and PCM for

audio component are supported and the maximum number of audio tracks to be

decoded simultaneously is limited to 32.

2.4 Hierarchical structure of audio tracks

IM AF allows several hierarchical levels for the tracks by defining groups.

Several audio tracks can be gathered in a group (i.e., all guitars of a song). A

group can contain tracks or group of tracks. The groups‟ container is Group

Container Box „grco’ box, it hosts one or more Group Boxes „grup’, as many

as the groups desired by the producer. Number of tracks per group, name and

number of groups are defined by the producer.

Figure 2.5 - Structure of a song composed of groups

Using the group_activation_mode parameter, it is possible to have an

additional control on the number of tracks that are in active state when a group

is played. For instance, a group can contain different versions of the same

CHAPTER II THE MPEG-A IM AF STANDARD

 30

instruments in a song, as in Figure 2.5. It is possible to set just one track per

each group to be in active state while the song is played, without overlapping

the playing of more than one version of the same instrument. This feature is

strictly connected to the Min/Max mixing rule, and so further details will be

given in the respective section of this chapter.

2.5 Preset information

A preset stores the volume of each track in a song; more than one preset can be

included in an IM AF file. They could be decided by the producer at file

creation time or included by the user in a later stage. Presets are involved in the

Preset-mix mode of the player: this is the fastest way for the user to switch

between different mixes of the same song, and it is useful especially on devices

with limited interface, such as car-audio and small mp3 player.

The Preset Container Box „prco‟ contains fields for general information, such

as the number of presets and the default preset ID, which indicates the preset

activated at the initial condition without any user interaction. It stores one or

more Preset Box „prst‟ (i.e. a default preset could be the original mix by the

music producer; a karaoke preset can exclude the vocal track, and so on). Each

„prst‟ box contains specific pre-defined mixing information, such as preset ID,

track IDs involved in the preset, the preset type, playback volume gain, and

preset name. The flags value in each Preset box establishes if the preset is

visible and editable by the user; choice is accomplished by the producer. A

preset can apply to tracks or objects (single channels in an audio track).

The IM AF standard defines some default presets. These form two main

categories: static and dynamic. Using static presets, the encoder sets a fixed

CHAPTER II THE MPEG-A IM AF STANDARD

 31

volume to each element involved for the whole duration of the song. In

dynamic presets the volume of a track (or various tracks, simultaneously) can

vary over time. The complete list of the available presets is in Table 2.4.

In the recently published amendment of the standard, dynamic volume change

with approximated volume and equalization functionality has been added for

each of the audio tracks [3].

preset_type DESCRIPTION

0 static track volume preset

1 static object volume preset

2 dynamic track volume preset

3 dynamic object volume preset

4 dynamic track approximated volume preset

5 dynamic object approximated volume preset

6 Value reserved

7 Value reserved

8 static track volume preset with EQ

9 static object volume preset with EQ

10 dynamic track volume preset with EQ

11 dynamic object volume preset with EQ

12 dynamic track approximated volume preset with EQ

13 dynamic object approximated volume preset with EQ

Table 2.4 - Presets defined in IM AF standard.

The dynamic volume change can be used to create effects like fade-in or fade

out. To perform this task, IM AF uses an efficient representation that defines

volume change by a time interval, instead of declaring variations at each

sample. Volume changes during the time interval can be represented by a

triplet (a, b, c):

a) the starting sample number;

b) the duration of the time interval (number of samples) that the volume

change takes place;

c) the new volume level at the end of the time interval.

CHAPTER II THE MPEG-A IM AF STANDARD

 32

These parameters are specified in start_sample_number, duration_update and

end_preset_volume_element values and they completely define the volume

change in a track.

Figure 2.6 shows a volume curve of fading quantized by using the dynamic

volume change representation in IM AF. In this way, the required storage

space for dynamic presets in the file is significantly low.

Figure 2.6 - Volume change representation by a time interval. The bolded values are

the parameters used by the encoder to define a volume change

Every available preset has a version that provides equalization using standard

filters implemented into the player: LPF, HPF, LSF, HSF and Peaking.

More than one filter can be applied on each track and the use of equalization is

very easy for the producer: each filter only requires a set of tuneable

equalization parameters (central frequency, bandwidth and gain) as shown in

Table 2.5; the encoder saves this information into the preset box, then the

equalization is performed by the built-in filters in the IM AF player.

 VA

 VB

VOLUME LEVEL

D1

D2

D3

SA

S2 S3

SB

 V1

 V2

DF

SAMPLE NUMBER

Update duration

Starting

sample

number

Ending

sample

number

Starting

volume

Ending

volume

CHAPTER II THE MPEG-A IM AF STANDARD

 33

FILTER TYPE

(filter_type)
FILTER_REFERENCE_FREQUENCY

FILTER_GAIN/

END_FILTER_GAIN
FILTER_BANDWIDTH

LPF (1) Cut-off frequency (F in Hz) Undefined Slope (S in dB/octave)

HPF (2) Cut-off frequency (F in Hz) Undefined Slope (S in dB/octave)

LSF (3) Corner frequency (F in Hz) Gain (G in dB) Slope (S in dB/octave)

HSF (4) Corner frequency (F in Hz) Gain (G in dB) Slope (S in dB/octave)

Peaking (5) Center frequency (F in Hz) Gain (G in dB) Quality factor (Q)

Table 2.5 - Details about equalization in IM AF: available filters and parameters

2.6 Interactivity rules

IM AF standard provides the usage of some restrictions that can be imposed by

the producer/artist to limit the changes operated by users on a song, with the

aim to preserve the original artistic creation (i.e., the vocal track in a song

cannot be muted, or the volume of the guitar must always be higher than the

keyboard volume). These restrictions are called rules. Their definition is

optional and so not imposed by the format.

The Rules Container Box „ruco‟ stores one or more rule. Every rule (save some

exceptions that will be highlighted) can be applied between two elements

identified by their IDs through element_ID and key_element_ID parameters.

Such elements could be either tracks or groups. Therefore, if the producer

needs to apply a rule between more than two tracks, group are needed for this

purpose.

IM AF defines two kinds of rules which are applied on both selection and

mixing of audio tracks, so it is possible to distinguish between Selection Rules

and Mixing Rules.

CHAPTER II THE MPEG-A IM AF STANDARD

 34

2.6.1 Selection Rules

The first kind of rule affects the selection of the elements in a song (audio

tracks or groups) at rendering time. For instance, the producer could decide

that the guitar solo track in a song must not be muted, or that the keyboards

and the strings must always not be played in the same time during the song.

“selection_rule_type”

value
SELECTION RULE

0 Min/Max rule

1 Exclusion rule

2 Not mute rule

3 Implication rule

Table 2.6 - Selection rules in IM AF

The four kinds of selection rules are: exclusion rule, not mute rule, implication

rule and min/max rule. Each one of these essentially defines if a track is in

active state or not. Every selection rule is stored in a Selection Rule Box „rusc‟.

Details about every selection rule are:

1) Exclusion rule: this rule allows specifying that several elements of a

song will never be in the active state at the same time, so they will never

be played at the same time during the song. This rule can be defined by

a NAND logic operator between two elements. Thus, A ϴ B (where ϴ

stands for exclusion and A and B are elements) means that the active

state of the element A implies the exclusion of the element B, and vice

versa.

2) Not Mute rule: it is the simplest rule available. It applies just to one

element per time (hence, just element_ID needs to be defined), setting a

permanent active state for it during the rendering time.

CHAPTER II THE MPEG-A IM AF STANDARD

 35

3) Implication rule: this rule links the state of one element to another. The

two used parameters have the following meaning:

- key_element_ID defines the element that imply the activation;

- element_ID defines the implied element.

To indicate this rule, the standard uses the symbolism A → B and B →

A (where → stands for implication and A and B are elements) and 3

cases to specify how it works:

- A → B means that if the element A is in the active state, then the

element B will be in the active state too;

- If the element B is in the inactive state then the element A hold its

own state;

- Finally, if the element A is in the inactive state then the element B

might be in the active or inactive state.

4) Min/Max rule: it applies to groups only, so only the element_ID

parameter needs to be defined and this must be a group ID. The rule

allows specifying both minimum and maximum number of elements of

the group that might be in active state. Two extra parameters are used

for this rule:

- min_num_elements that specifies the minimum number of elements

of the group that might be in active state at the same time;

- max_num_elements that specifies the maximun number of elements

of the group that might be in active state at the same time;

The default minimum and maximum values are, respectively, 0 and n,

where n stands for the number of elements contained in the group where

rule is applied.

CHAPTER II THE MPEG-A IM AF STANDARD

 36

2.6.2 Mixing Rules

The second kind of rule is related to the audio mixing. These rules are also

defined by the creator of the IM AF file and will referee the user‟s changes of

groups and audio tracks volumes when the song is played. For instance, the

producer could decide that the rhythmic section (i.e., bass and drums) must

always have the same volume, or that the volume of the vocal track must

always be higher than the other tracks during the song. Mixing rules shall be

considered only for the elements which are in active state at rendering time.

“mixing_rule_type”

value
MIXING RULE

0 Equivalence rule

1 Upper rule

2 Lower rule

3 Limit rule

Table 2.7 - Mixing rules in IM AF

The four kinds of mixing rules are: equivalence rule, upper or lower rule and

limits rule. They are basically used for coupling two elements in a song (except

the limits rule). Every mixing rule is stored in a Mixing Rule Box „rumx‟ and

can be applied between elements in the same group or to elements belonging to

different groups. Details about every mixing rule are on the following:

1) Equivalence rule: this rule can be applied between two elements in a

song. It defines a strict equivalence relationship the volumes of the two

elements, so that they are always played at the same volume during the

song.

CHAPTER II THE MPEG-A IM AF STANDARD

 37

2) Upper/Lower rules: these rules define a strict superiority/inferiority

relationship between the volumes of the selected elements. Upper rule

applied between two elements A and B means that the volume of

element A (key_element_ID) will always be higher than the volume of

element B (element_ID), and vice versa for the lower rule.

3) Limits rule: it applies just to one element per time (hence, just

element_ID needs to be defined), fixing the minimum and maximum

limits for the volume of the selected element. Two extra parameters are

used for this rule:

- min_volume that specifies the minimum volume of the element;

- max_volume that specified the maximum volume of the element.

2.7 Additional media data

The novelty of IM AF is on additional media data that enrich the user‟s

interaction space, like timed text synchronized with audio tracks, which can

represent the lyrics or the chords of a song, and images related to the song,

album and artist.

Independently from the chosen mode (Preset-Mix or User-Mix), the IM AF

interactive player can always display these contents while a song is played.

2.7.1 Still picture

IM AF supports the JPEG file format for still pictures [5]. Pictures can be

associated, i.e., to the music album‟s cover and/or to artist‟s photos. Images

can be the media defined by a „trak‟ box or can be included as metadata in the

standalone Meta Box „meta‟ in the IM AF file format. Similar to MPEG-7

CHAPTER II THE MPEG-A IM AF STANDARD

 38

creation metadata can also be a hierarchy of still pictures at album and song

and track level, as will be described in the relative section (Paragraph 2.8).

2.7.2 Timed text

IM AF provides text visualization supporting the 3GPP standard [6], with

possibility to change style and colour of the font and to add visual effects to it.

Timed text data are composed of text samples and sample description. Every

sample is a text string (list of characters), which is defined in a „trak‟ box with

different parameters compared to the one used for the audio tracks.

Text samples can be followed by sample modifier boxes containing

information about how the text string should be rendered such as highlighted

text for karaoke. Sample description specifies the way text is rendered, its

horizontal and vertical justification, its background and foreground colour, font

type and size, etc.

Figure 2.7 - Additional media data in IM AF: picture and timed text

TIMED TEXT

(3GPP)

PICTURE

(JPEG)

CHAPTER II THE MPEG-A IM AF STANDARD

 39

2.8 Metadata

Metadata provides simple background information for a song (i.e. title, singer,

album, etc.). In the IM AF file, metadata are stored in the Meta Box „meta‟.

Different „meta‟ boxes can be contained at the same time in different levels, as

shown in Table 2.8. Every level hosts textual XML metadata information.

METADATA LEVEL LOCATION

track level trak/meta box

song level moov/meta box

album level meta box of file

Table 2.8 - Hierarchical levels of metadata in IM AF.

The encoder receives these data either from the producer or extracts them from

the ID3 tags of the input MP3 files, then stores them all in the XML Container

Box „xml‟. MPEG-7 is the multimedia content description standard supported

by IM AF [7].

2.9 Compatibility with legacy players

For legacy players or devices that do not provide multitrack support, IM AF

files can still be played. An audio track containing the classic producer‟s mix

of all the instruments in a song (All Recorded track, AR) can be included and

set as the only “track enabled” that will be played by the legacy player;

whereas the IM AF player is able to switch it off and play the multi-track

version. In order to distinguish the AR audio track from the audio tracks for

interactive music service, flag field of Track Header Box „tkhd‟ is used. For the

AR audio track, the flag is set as „Track_enabled‟ whose value is 0x000001,

whereas the flag of the audio track for interactive music service is set as

„Track_disabled‟ whose value is zero.

CHAPTER III THE IM AF ENCODER

 40

CHAPTER III

THE IM AF ENCODER

Introduction

After seeing into details the specifications of the IM AF standard, we can talk

about the implementation of the features for the IM AF encoder.

A first version was proposed, as proof of concept, by the Centre for Digital

Music of the Queen Mary University of London, in late August 2012 [26]. It

essentially defined the basic structure of an IM AF file, including individual

music-tracks encoded in MP3 format, with a limited choice for the presets and

the rules. Many features were not integrated and left for future developments.

This work comes to fill in this gap, improving the capabilities of the IM AF

Encoder and making it as more as possible compliant to the standard.

Beside the definition of the whole set of presets and rules, the main work on

the encoder has been done for the inclusion of pictures and timed text data as

karaoke lyrics, to be shown during the playing of a song in IM AF format.

The IM AF Encoder uses a simple command line interface and has been

developed in C programming language (ANSI C - C89, to be more precise)

using Visual Studio 2012.

CHAPTER III THE IM AF ENCODER

 41

3.1 Useful tools: Mp4 Explorer and Mp4 Browser

The implementation of a compliant IM AF encoder is mainly based around

“filling in” the ISO-BMFF boxes in the right way. The size of the boxes is the

most important parameter to be sure of having a playable IM AF file.

Declaring the wrong size of a single box may lead to bytes misalignment and

malfunction in the file, even in the case of a single byte error.

Some tools have been extremely useful in the development of a successfully

compliant IM AF encoder to the standard. The MP4 Browser [36] and MP4

Explorer tools [37] are free software for Windows that analyse the structure of

ISO-BMFF files, showing the content, type and size of all boxes, except the

ones introduced and used exclusively by the IM AF file format (like presets

and rules boxes) since they were created to work with ISO/IEC 14496 files

(MPEG-4).

Without this type of utilities, building an IM AF encoder would be much more

difficult.

Figure 3.1 - MP4 Browser and MP4 Explorer tools

CHAPTER III THE IM AF ENCODER

 42

3.2 Brand definition

The standard‟s amendment n.2 [2] includes the reference software „IM AF

Player‟ and 6 conformance files, each one including different features. Since

the main target of the work is the inclusion of the picture and timed text

support for the encoder, the conformance file n.2 has been considered as

model; details about the considered file are in Table 3.1. It has 6 audio tracks

and its major brand is „im02‟, but it also covers brands „im01‟, „im03‟, „im11‟

and „im21‟ with AAC audio tracks.

FILE NAME

BRAND

(COVERED

 BRAND)

OF

AUDIO

TRACKS

COMPONENTS PRESET
OF

GROUPS

RULE

SELECTION MIXING

example_02.i

ma

im02

(im01,

im03,

im11,

im21)

6

- AAC

- JPEG

- MDS

- Static

track

volume

preset

-
- Implicatio

n rule

- Equivalenc

e rule

- Limit rule

Table 3.1 - Details of the Conformance File n.2, considered as the model for the

inclusion of picture and timed text.

For the proposed encoder, the MP3 format has been chosen for the audio

tracks, with a maximum limit of 6 audio tracks, for being easily played on any

kind of device -- from budget smartphones to the more powerful Digital Audio

Workstation (DAW) -- and for an easy inclusion of the encoder in Sonic

Visualiser at a later stage (see Chapter 5).

The limit is defined by a global variable „maxtracks‟ and can be easily

increased. Hence, the created conformance files will cover other brands

(according to the Table 2.3) that are „im03‟ and „im11‟. The major brand

remains „im02‟.

CHAPTER III THE IM AF ENCODER

 43

The input files (MP3s, 3GP file and JPEG picture) location is declared on the

top of the header IM_AF_Encoder.h file.

3.3 Multitrack Audio

The inclusion of multiple audio tracks in the creation of an IM AF file was

mainly developed in the early version of the proposed encoder. Therefore, this

paragraph will be briefly described, while the full specifications can be found

in the referenced work [26].

The first step in the encoding process is to extract the audio samples of every

single input MP3 audio file and store them into an ISO-BMFF Media Data

Container Box „mdat‟.

Basically an MP3 file is split into small blocks or frames where data is stored.

Each frame has 1152 samples. The IM AF Encoder uses MP3 format with

constant bit rate of 128 kbps, 16-bits resolution and 44.1kHz sampling

frequency, joint stereo mode.

Each frame has duration of

1152/44100 ≈ 0.026 sec

and the formula for counting frame length in bytes [43] gives

144 × (bitrate / sample rate) + pad = 144 × (128000/44100) + 0 = 417 Bytes

where the result has been rounded down.

CHAPTER III THE IM AF ENCODER

 44

At beginning and end, MP3 files may also include auxiliary data such as ID3

TAGs, metadata with information related to the song, album and artist. The

encoder opens each MP3 file and search for the first frame avoiding the ID3

header, as it does not contain useful information for the current purpose. Then,

the encoder reads any of the audio samples until the end of file and writes them

in the „mdat‟ box in output file.

The second step in the encoding process is to extract the following values from

each MP3 frame: size (in bytes) and length (in milliseconds) of the frame,

number of samples and duration. The IM AF encoder writes this information in

the corresponding container inside a Track Box „trak‟ as it is illustrated in

Figure 3.2.

Figure 3.2 - Audio samples and associated data transfer from MP3 to IM AF.

The information needed by the encoder in order to reproduce the media data

will be contained in tables. These tables are held in boxes inside the Sample

ID3 Header

SAMPLES

Frame 2 Header

SAMPLES

Frame 1 Header

Frame 3 Header

SAMPLES

MP3 File

IM AF File

Sample Table (stbl)

Media Data (mdat)

Track Box (trak)

Sample Description (stsd)

Time to Sample Box (stts)

Sample to Chunk (stsc)

Sample Size (stsz)

Chunk Offset (stco)

AUDIO

Size of frame

Length of frame

N° samples

Duration

CHAPTER III THE IM AF ENCODER

 45

Table Box „stbl‟. The Sample Description Box „stsd‟ gives information of the

coding type used, the sampling rate and decoder specific information.

The Time to Sample Box „stts‟ contains a table that stores for each entry two

values: the number of MP3 frames with the same duration and the duration (in

milliseconds) of each of these frames. Samples within the media data are

grouped into chunks.

The Sample to Chunk Box „stsc‟ defines a table that includes the size of each

chunk and the number of chunks that have the same size. For constant bitrate

MP3s, this table includes only one entry, that is, the number of MP3 frames in

the chunk since all the chunks are equally sized. In the Sample Size Box „stsz‟

are stored the number of MP3 frames once more and a table giving the size (in

bytes) of each of these audio frames.

Finally, the Chunk Offset Box „stco‟ indicates the position of the beginning of

the data of the audio track in the Media Data Container Box „mdat‟ of the IM

AF file.

3.4 Groups

In IM AF file, the groups hold the IDs (element_ID) of the contained elements.

Since a group contain audio tracks and groups, element_ID shall be the ID of

tracks (track_ID) and/or ID of groups (group_ID). Elements IDs are all 32-bits

unsigned integer values.

A track_ID shall be represented using values from 0x00000001 to

0x7FFFFFFF and a group_ID shall be represented from 0x80000000 to

0xFFFFFFFF. Hence, elements identified by element_ID are recognized as a

CHAPTER III THE IM AF ENCODER

 46

track_ID or as a group_ID according to the Most Significant Bit (MSB) of the

element ID. The maximum number of groups allowed by the encoder in an IM

AF file is set with the global variable maxgroups.

3.5 Presets

The IM AF standard defines some default presets, as described in Paragraph

2.5. Despite the availability of 11 presets, only 6 of them are really available,

as the other are not yet implemented in the reference software. Moreover, the

dynamic presets corresponding to the preset_type values of “2” and “3” had

been not included in any of the provided conformance files. Hence, it is not

possible to test completely the functionality of these missing presets when

included in an IM AF file. The following Table 3.2 resumes the actual

available presets.

preset_type AVAILABILITY DESCRIPTION

0 static track volume preset

1 static object volume preset

2 dynamic track volume preset

3 dynamic object volume preset

4 dynamic track approximated volume preset

5 × dynamic object approximated volume preset

6 - Value reserved

7 - Value reserved

8 static track volume preset with EQ

9 × static object volume preset with EQ

10 × dynamic track volume preset with EQ

11 × dynamic object volume preset with EQ

12 × dynamic track approximated volume preset with EQ

13 × dynamic object approximated volume preset with EQ

Table 3.2 - The presets list defined by the IM AF standard and their effective existence

in the reference software.

CHAPTER III THE IM AF ENCODER

 47

Every preset form a PresetBox „prst‟ in the PresetContainer Box „prco‟. The

encoder ask user for the number and the kind of desired presets. The maximun

number of presets to be included in an IM AF file is fixed to 10 by the global

variable maxpresets. The preset_ID value is automatically e progressively

assigned, starting from 1. The first declared preset will be the default preset,

that is the one played by default when the player‟s Preset-Mix mode is chosen.

The flags value in each Preset box is set to 0x02 (enable Display, disable Edit);

the possibility of using the value 0x03 (enable Display, enable Edit) has still to

be explored, since the IM AF player interface does not allow to edit presets yet.

A preset supplied by the encoder involves all the available audio tracks in a

song (num_preset_elements = totaltracks) and has a fixed overall volume

(preset_global_volume = 100); both values can be easily changed and maybe

asked as input parameters, even it is not clear what happens to the exluded

tracks in a preset when num_preset_elements < totaltracks.

Presets have different ways from each other to be included in the IM AF file.

The function called presetcontainer() controls this process, using a switch/case

structure to select the appropriate implementation, with preset_type value as

switching variable.

The static presets basically require the definition of the playback volume gain

for each audio track or object (channel), by setting the preset_volume_element

with the desired value and using the quantization Table 3.3 below.

Index 0 1 2 3 … 199 200

value (ratio) 0 0.02 0.04 0.06 … 3.98 4.00

Table 3.3 - The quantization table for playback volume gain.

CHAPTER III THE IM AF ENCODER

 48

The presets that involve objects require the definition of the

output_channel_type, that is the number of channels of each included audio

track. The IM AF encoder uses Joint Stereo tracks only, so the value is set to 1

(for generic stereo tracks). To constraint this, the global variable num_ch is

used and set to 2.

The only one working dynamic preset is the “Dynamic track approximated

volume”. It can be used to create effect like fade-in and fade-out and it uses the

dynamic volume change representation described in Paragraph 2.5. The

maximum number of volume changes in a track is set by the global variable

maxdynamic.

The start_sample_number and duration_update are integer values that indicate

the sample where the volume change takes place and the number of samples

that it occurs, respectively. It can be possible to refer to the playing time rather

than the samples by multiplying both values for 0.026 (see Paragraph 3.2).

Finally, the only one working preset with equalization “Static track volume

with Equalization”. Equalization can be applied to every track individually;

more than one filter per time on each track can be used. The maximum number

of filters that is possible to apply to every track is set by the global variable

maxfilters.

Built-in IM AF player filters can be used for this purpose and their use is

desribed in Paragraph 2.5 and in details in Amendment 3 [3]. The filters are

based on a 2
nd

 order IIR structure.

Defining the parameters of a filter could be problematic without an user

interface, for a not-expert user.

CHAPTER III THE IM AF ENCODER

 49

To make it easy to use, only one filter has been set in the IM AF encoder, with

the following parameters:

- filter_type = 4 (HPF)

- filter_reference_frequency = 5000 (10kHz)

- filter_gain = N.D. for HPF (G = filter_gain/5-41 [dB])

- filter_bandwidth = 4 (S = filter_bandwidth × 6 = 24 dB/octave)

3.6 Rules

Every preset defined by the standard specification is included and fully

working in the developed encoder. As described in Paragraph 2.6, rules are

from two categories: Selection Rules and Mixing Rules.

The IM AF encoder needs specific information for each one of the rule;

required parameters are briefly summarized in the following tables:

SELECTION RULES

Type
mixing_rule

type

element

ID

key_element

ID

min_num

elements

max_num

elements
rule_description

Min/Max 0
Group ID

required -

Exclusion 1 - -

Not mute 2 - - -

Implication 3 - -

Table 3.4 – Selection rules in IM AF.

CHAPTER III THE IM AF ENCODER

 50

MIXING RULES

Type
selection_rule

type
element_ID key_elem_ID

min

volume

max

volume
rule_description

Equivalence 0 - -

Upper 1 - -

Lower 2 - -

Limit 3 -

Table 3.5 – Mixing rules in IM AF.

The function rulescontainer() defines the structure of the Rule Container Box

„ruco‟, which hosts one or more rule boxes (Selection Rule Box „rusc‟ or

Mixing Rule Box „rumx‟).

Every rule in the developed encoder, for now, applies only to couple of audio

tracks. In general, elements involved in a rule could be either audio tracks or

groups of them. Moreover, the encoder allows the presence of only one rule for

each category (one for selection and one for mixing).

3.7 JPEG Still Pictures

A picture is included as metadata in the standalone Meta Box „meta‟ in the IM

AF file format. The size of the desired JPEG picture is calculated by the

function imagesize(), then the whole ‘.jpeg‟ image file is copied in the Media

Data Container Box „mdat‟ box using the function insertimage().

The image‟s size and its offset in the „mdat‟ are saved in the Item Location Box

„iloc‟, in particular into the „extent_lenght‟ and „extent_offset‟ values. Other

CHAPTER III THE IM AF ENCODER

 51

information, such as picture‟s name and encoding type, are stored in Item

Information Box „iinf‟.

3.8 3GPP Timed Text

The developed encoder is able to include a timed text track in an IM AF file.

Text samples (strings) and their description are imported from a 3GP file,

created using external software, like QuickTime Player [22]. Information about

the strings and their display start/end time can be initially included in a text

file, using the following syntax:

[start time] Text String [end time]

This „.txt‟ file can be opened and then exported in 3GP format using

QuickTime Player. An ISO-BFFF structure will be created, with a „mdat‟ box

IM AF File

Item Location Box ‘iloc’

Media Data (mdat)

Meta Box ‘meta’

Item Information Box ‘iinf’

extent_length

extent_size

item_name

content_encoding

IMAGE

Size

Offset

Name

Encoding type

binary copy

Figure 3.3 - JPEG picture inclusion process in IM AF Encoder

CHAPTER III THE IM AF ENCODER

 52

that contains the text strings and „stts‟ box with information about the text

timing. Storage of timing information is similar to audio tracks, as the same

boxes are used („stts‟, „stsc‟, „stsz‟ and „stco‟ as showed in Figure 3.2).

Duration (in samples) for every string is saved in „stts‟ box according to the

following relation:

sample delta = duration of interval (sec) × timescale [3.1]

where timescale is an integer value that indicates the time unit per second. The

default value is 600, which is the normal movie time scale [22].

Example 3.1 - A set of 3 phrases is included in the text file, with the following

syntax:

[00:00:00.000] String A [00:00:02.000]

[00:00:02.000] String B [00:00:05.000]

[00:00:05.000] String C [00:00:10.000]

that stands for the displaying of the text “String A” between seconds 0 and 2,

“String B” between seconds 2 and 5 and “String C” between seconds 5 and 10.

QuickTime creates 3 entries in „stts‟, where the 3 “delta” values are obtained

using the relation [3.1]:

(count, delta)[0] = (1,1200) -> 1200 = 2 seconds x 600

(count, delta)[1] = (1,1800) -> 1800 = 3 seconds x 600

(count, delta)[2] = (1,3000) -> 3000 = 5 seconds x 600

CHAPTER III THE IM AF ENCODER

 53

Figure 3.4 - Structure of the 3GPP file in Example 3.1. The figure highlights the

content of the „stts‟ box.

The „mdat‟ and „stts‟ are the only two boxes contained in 3GP file that the

encoder uses to create the timed text track. Boxes like „stsz‟, „stco‟, „stsd‟ and

„stsc‟ are created from scratch in the IM AF file.

The encoder seeks every text string inside the text file and it copies them in the

„mdat‟ box of IM AF file. For the encoder purpose, the timed text track is used

to display the lyrics of the played song, so it requires some modifiers to be

rendered in karaoke style. In „stsz‟ is stored the size of every string, including

the modifiers like the highlight colour of the text or the highlight start/end time

of words in a phrase.

Another important box is „tx3g‟, contained inside Sample Description Box

„stsd‟, which defines sample descriptions for the text track (i.e. font type and

size, horizontal and vertical justification, background colour) [6].

CHAPTER III THE IM AF ENCODER

 54

3.9 Metadata

The container for metadata information is Meta Box „meta‟. This is required to

contain a Handler Box „hdlr‟ indicating the structure or format of the contents.

MPEG-7 streams, which are a specific kind of metadata stream, have their own

handler declared, documented in the MP4 file format [7].

For IM AF a generic metadata track handler is sufficient, so handler_type is

simply set to „meta‟ and the name value, which is a string that gives a human-

readable name to the box for debugging and inspection purposes, is set to

„mp7t‟.

The „meta‟ box purpose is twofold: it hosts the descriptive or annotative

metadata (about song, album, artist, etc.) and provides information about the

JPEG picture included in the IM AF file by locating its offset within the file

and its length (in bytes).

The metadata is located in the XML Box „xml‟ in XML format, as the name

implies. The IM AF encoder simply includes such information in the resulting

file by writing the string value. For now, this value can be changed in the

source code only.

The Item Location Box „iloc‟ provides information about the position within

the file of different resources. In the IM AF encoder, it is only used to locate

the JPEG picture store in the Media Data Container „mdat‟, so the item_count

is set to 1. The extent_offset parameter provides the absolute offset in bytes

from the beginning of the IM AF file, while extent_length provides the

absolute length in bytes of the picture.

The Item Information Box „iinf‟ provides extra information about selected

items located by „iloc‟, like item_name, content_type and content_encoding.

CHAPTER III THE IM AF ENCODER

 55

This information is not mandatory and there is no feedback provided by the IM

AF player about them. They are just used for debugging and inspection

purposes.

3.10 Software Version Control

Working in a team on a project like the IM AF Encoder, requires a tool that

allows the easy consultation, modification and exchange of the code for every

developer. For this purpose, we made use of Sound Software and Easy

Mercurial.

Sound Software [38] is an online file repository based on Mercurial [39], a

free, distributed CVS (Concurrent Versions System). It efficiently handles

projects of any size and offers an easy and intuitive interface, allowing team

members to track the history of their work and to help collaborate each other.

Easy Mercurial [40] is an interface for the Mercurial system and allows easy

downloading (pull) and uploading (push) of files on the repository.

Figure 3.5 - Updating the Sound Software repository with Easy Mercurial

CHAPTER IV RESULTS

 56

CHAPTER IV

RESULTS

Introduction

The capabilities of the developed encoder are tested by creating some

conformance files. Conformance files shall be readable by the IM AF reference

software and used to verify some possible combinations of features defined by

the specification of the IM AF.

A comparison between the created conformance file will be highlighted by

defining some conformance point. Every point shall contain specific supported

components.

CHAPTER IV RESULTS

 57

4.1 Creation of an IM AF file

When the IM AF encoder is executed, it is possible to create an IM AF file

following the instructions for every step on the screen. In Chapter 3 all the

required parameters for every feature are described.

Table 4.1 lists these parameters, indicating the ones that are required as input

from the user and the few ones that are automatically set.

4.2 Conformance points

An IM AF file that complies with the standard must conform to some

conformance points. These points are like subcategories that arrange the files

by their supported components. Conformance points must not be confused with

brands: in all brands, components such as image, timed text and metadata may

exist. The conformance points of Interactive Music AF (IM AF) are followed:

 Conformance point 1 (C1) provides basic capability to play mixed

audio track according to the preset. An IM AF file that conforms to this

conformance point shall have at least one preset information (at least

one ‘prst’ box). Furthermore, the file shall contain the following

supported components:

- Interactive Music AF compatible to ISO Base Media File Format

- One of the following supported audio components:

 MPEG-1 Audio Layer III

 MPEG-4 Audio AAC profile

 MPEG-D SAOC Baseline profile

 PCM

CHAPTER IV RESULTS

 58

PARAMETER
INPUT/CHOICE

FROM USER

SET IN THE CODE

(USED PARAMETER)

FILES FOLDER files_path

 JPEG picture

 └> Image file name image_path

 3GP file for timed text Mandatory

 └> Text file name

AUDIO TRACKS

 Max number of audio tracks maxtracks

 Number of audio tracks per file

 └> Name of audio tracks

GROUPS

 Max number of groups maxgroups

 Number of groups per file

 Name of the group

 Description

 Number of elements

 └> Involved elements IDs (Tracks only)

 Activation mode

 Volume

PRESETS

 Max number of presets maxpresets

 Number of presets per file

 └> Type

 └> Tracks volume

 └> Number of dynamic volume changes 1

 └> Start sample 100 (* 0.026s = 2.6 seconds)

 └> Change duration 500 (* 0.026s = 13 seconds)

 └> End volume fixed for fade in/out

 └> Equalization on the track

EQUALIZATION

 Number of filters per track 1

 └> Type HPF

 └> Central frequency 5000 (10kHz)

 └> Gain N.D. for HPF (G=Gain/5-41 (dB))

 └> Bandwidth 4 (S=Bandwidth*6 (dB/octave))

RULES

SELECTION RULES

 Number of Selection Rules 1

 └> Type

 └> Element ID (Track A ID)

 └> Key Element ID (Track B)

 └> Min elements number

 └> Max elements number

MIXING RULES

 Number of Mixing Rules 1

 └> Type

 └> Element ID (Track A ID)

 └> Key Element ID (Track B ID)

Table 4.1 - Detailed list of required parameters for the IM AF Encoder.

CHAPTER IV RESULTS

 59

 Conformance point 2 (C2) provides basic capability to play mixed

audio track according to the user’s interactive settings (such as

group/track selection and volume control) which comply with the rule.

In addition to the capabilities of conformance point 1, an IM AF file that

conforms to this conformance point shall have at least one group

information (at least one ‘grup’ box) and one rule information (at least

one ‘rusc’ or ‘rumx’ box). Files that conform to this conformance point

shall contain the following supported components:

- The components specified for conformance point 1

 Conformance point 3 (C3) provides capability to play image, timed text

and metadata in addition to the capabilities of conformance point 1.

Files that conform to this conformance point shall contain the following

supported components:

- The components specified for conformance point 1

- JPEG

- 3GPP Timed Text

- MPEG-7 Multimedia Description Scheme

4.3 Conformance files

Compliance of the encoder to the IM AF standard is achieved by creating IM

AF files, similar to conformance files provided by the standard. Every

conformance file belongs to the ‘im02’ brand, defined in Paragraph 2.3.

For the sake of completeness, four conformance files are compared: one for

each of the three Conformance Point and one with all the possible features that

an IM AF file can include. For this work, compliance to Conformance Points 2

and 3 only need to be checked, as compliance to Conformance Point 1 was

CHAPTER IV RESULTS

 60

already proved by the first encoder implementation [26]. Moreover, since the

inclusion of a timed text track is mandatory for the last version of the proposed

encoder, as shown in Table 4.1, compliance to Conformance Point 2 is checked

by using an IM AF file previously created with an earlier version of the code.

 FILE STRUCTURE AUDIO METADATA IMAGE TEXT

N. ISO-BMFF Brand ‘grco’ ‘prst’ ‘rusc’ ‘rumx’ MP3 AAC PCM SAOC MDS JPEG 3GPP TT

1 C1 C1 - C1 - - C1 - - - - - -

2 C1 C1 C2 C1 C2 C2 C1 - - - - - -

3 C1 C1 - C1 - - C1 - - - C3 C3 C3

4 C1 C1 C2 C1 C2 C2 C1 - - - C3 C3 C3

Table 4.1 - Compliance of the created IM AF files with conformance points.

N. FILE NAME

BRAND

(COVERED

 BRAND)

OF

AUDIO

TRACKS

COMPONENTS PRESETS
OF

GROUPS

RULES

Selection Mixing

1 CF01.ima

im02

(im03,

im11)

6 - MP3

- Static
track

volume

preset

- - -

2 CF02.ima

im02

(im03,

im11)

6 - MP3

- Static

track

volume
preset

1
Min/Max

rule
Limit rule

3 CF03.ima

im02

(im03,

im11)

5

- MP3

- MDS

- JPEG

- 3GPP

- Static

track
volume

preset

- Dynamic
track

volume

preset

-
Exclusion

rule
Upper rule

4 CF04.ima

im02

(im03,

im11)

5

- MP3

- MDS

- JPEG

- 3GPP

- Static

track

volume

preset
- Dynamic

track

volume
preset

- Static

track
volume

preset

with EQ

2
Not mute

rule

Equivalence

rule

[Note] Major brand of all the conformance files is ‘im02’; it can be also ‘im03’ and ‘im11’ because difference

between them is only the maximum number of simultaneously decoded audio tracks and it depends on the

player performance. Hence conformance files cover the conformance test for ‘im03’ and ‘im11’ with MP3

audio tracks.

Table 4.2 - Details of the created IM AF conformance files.

CHAPTER IV RESULTS

 61

The IM AF player parses and plays the IM AF files and playing the

components such as audio, image, timed-text and metadata. Especially for

audio, multiple audio tracks are mixed according to the preset parameters or

user’s direct selection/control that conform to the rules made by a producer.

4.4 Playing the files

Every created IM AF file has been parsed and played successfully using the

reference software decoder. The IM AF player parses the IM AF files and

plays the components such as audio, image, timed-text and metadata, as shown

in Figure 4.1.

Especially for audio, multiple audio tracks are mixed according to the preset

parameters (in Preset-Mix mode) or user’s direct selection/control that

conforms to the rules (in User-Mix mode).

Audio decoding module

Image decoding module

Mixer

Rule analyzer module

..
.

AAC decoder

MP3 decoder

JPEG decoder

Metadata parsing module

MPEG-7 MDS parser

Preset parser

Rule checker Rule solver

Timed text parsing module

3GPP Timed Text parser

IM AF
file

paser

SAOC decoder

Figure 4.1 - The architecture of the IM AF player.

CHAPTER IV RESULTS

 62

Figure 4.2 - Details about the created CM_04.ima file (picture, lyrics, presets, groups).

Picture with album cover

Lyrics for karaoke

3 different presets

2 groups for tracks

CHAPTER IV RESULTS

 63

Figure 4.3 - Details about the created CM_04.ima file (file info, rules, metadata).

Information about brands and

encoding type

1 available

Selection Rule

Metadata information about

artist, song, album, etc.

1 available

Mixing Rule

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 64

CHAPTER V

INTEGRATION IN SONIC VISUALISER AND

FUTURE DEVELOPMENTS

Introduction

Once the encoder‟s compliance to the IM AF standard has been verified, we

can focus on the second goal of this work, which is the integration of the IM

AF Encoder in Sonic Visualiser.

Sonic Visualiser is a friendly and flexible end-user desktop application for

analysis, visualisation and annotation of music audio files. Providing IM AF

support for this software can open new horizons to the development of new

audio tools and to the music research in general, as it will be presented with

some use-case scenarios.

In this work, only the possibility of creating IM AF files has been provided in

Sonic Visualiser. This latter is not yet able to play IM AF files, since the

inclusion of the reference software player requires importing several libraries

in the already vast project that Sonic Visualiser is. Therefore, this part is

beyond the scope of this work and it is left as a possible future development.

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 65

5.1 Introduction to Sonic Visualiser and VAMP plugins

Sonic Visualiser is an open-source, cross-platform application designed to

assist in a friendly way the study and comprehension of what lies inside an

audio file, with particular emphasis on musical recordings [9]. It loads audio

files in WAV, Ogg and MP3 formats, and it displays their waveforms. It allows

audio visualisation such as spectrogram views, with interactive adjustment of

display parameters, and also to add overlay annotations on top layers. The

architecture of the application allows importing several tracks in a session and

to edit or apply effects to each one of them individually.

Figure 5.1 - Sonic Visualiser user interface.

An essential strength of Sonic Visualiser is its ability to support third-party

plugins. The native plugin format is called Vamp, an audio processing system

for plugins designed for audio features extraction [41].

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 66

Different from a VST (Virtual Studio Technology) plugin, a Vamp plugin is

not designed to generate sounds and effects, but to recover symbolic

information from an audio file, like the key and the chords of a song, or visual

representations of the audio such as its spectrum (Figure 5.2). A Vamp plugin

may be non-causal and does not have to be able to run in real-time.

A library of the existing Vamp plugins is available at [41].

5.2 The Qt library

The Sonic Visualiser‟s interface is developed using the Qt library. Qt is a

cross-platform application framework that is used for developing application

software with a graphical user interface (GUI) [42]. It was widely used by

Nokia in the past to develop apps for smartphones that run the Symbian mobile

operative system.

Qt Creator is the supporting Qt IDE (Integrated Development Environment)

and the latest available version of Sonic Visualiser (2.1) requires Qt 5.0.2 to be

compiled on Windows systems.

PITCH

CHORDS

SPECTOGRAM

Am – G – F – C

C – Am – F – C

VAMP

PLUGIN

AUDIO FILE

HOST SOFTWARE

Figure 5.2 - Possible outputs of a Vamp Plugin when used in a host software like Sonic

Visualiser.

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 67

Qt is based on the concept of widgets that basically are objects in the GUI that

can display data and status information, receive user input, and provide a

container for other widgets that should be grouped together. A widget that is

not embedded in a parent widget is called window.

Figure 5.3 - The three Qt's fundamental elements: widgets, signals and slots.

The signals and slots mechanism is a central feature of Qt and probably the

part that differs most from the features provided by other frameworks. Signals

and slots are used for communication between objects:

- A signal is emitted when a particular event occurs;

- a slot is a function that is called in response to a particular signal.

Qt's widgets have many predefined signals and slots, but it is possible to add

custom ones to them.

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 68

5.3 Interface development

The integration of the IM AF Encoder in Sonic Visualiser is based on two main

targets:

- Including a control for the tracks volume, in order to store this

information in a preset in an IM AF file;

- Creating the “Export to IM AF file” option in the “File” menu of Sonic

Visualiser, in order to save a multitrack session in an IM AF file.

The most part of the modification has been done on the main window code,

editing MainWindow.cpp and MainWindow.h files inside the Sonic Visualiser‟s

Qt project.

Sonic Visualiser‟s user interface is structured around panes and layers. A pane

is a horizontally scrollable area of window, like a drawing canvas, that is

opened when an audio file is imported into the session; a layer is one of a set

of things that can be shown on a pane, such as the waveform associated to the

audio file, the spectrogram or a frequency analysis. Every layer includes values

about its task.

Figure 5.4 – Structure of a pane in Sonic Visualiser with the AudioDial control for the track

volume in the IM AF file.

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 69

For the inclusion of the “IM AF Volume” control for each track in a Sonic

Visualiser‟s session, we refers to the Waveform layer; the control is created by

using the AudioDial widget placed next to the gain and pan controls of the

layer, as shown in Figure 5.4.

To recover parameters from a layer, we need to scroll the widget‟s hierarchy of

the main windows. This hierarchy is presented in Figure 5.5.

Once the parameters container for the waveform layer is recovered from the

interested pane, the IM AF Volume parameters is obtained through the

getVolImaf() function. The value varies between 0 and 100 and is passed to the

mainIMAFencoder() function (that is the main of the developed encoder) when

this is called to create the resulting IM AF file.

The second step of the integration is the creation of an option that allows

exporting the Sonic Visualiser‟s multitrack session in IM AF format. A dialog

window has been developed for this purpose and it appears when the “Export

to IM AF file” option is selected from the “File” menu, as shown in Figure X.

SPECTRUM

WAVEFORM

SPECTOGRAM

PANE 1

PANE STACK

PANE 2

PANE N

m_paneStack
MainWindow

getPane()

PANE i

getLayer()

getPlayParameters()
Peak Frequency

Window

Scale

…………

Pitch

Phase

Frequency

…………

Playback Gain

Playback Pan

IM AF Volume

…………

Figure 5.5 - Hierarchy of panes, layers and parameters in Sonic Visualiser, with the

corrispective functions to recover the elements.

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 70

The window allows selecting in a very easy way the features to include in the

IM AF file that is going to be created. Some parameters are missing due to the

choices made during the encoder implementation (they are set in the source

code, see Table 4.1 - Paragraph 4.2) and to keep the dialog window more clean

and user friendly.

Figure 5.6 - Export option and encoder interface in Sonic Visualiser.

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 71

5.4 Scenarios

Providing IM AF support in a tool for the analysis of audio data, such as Sonic

Visualiser, would open new opportunities to include media data in a file and to

develop new tools for the music information retrieval (MIR).

A possible use case scenario is presented in the following using a Vamp plugin

for chords extraction, known as Chordino [18]. In Figure 5.7 is shown the

difference on using the same Chordino algorithm, with the same set-up,

between the single instrument tracks and the classic mix-down of a song.

Processing of the mixed track cannot be precise enough for having a reliable

chords extraction, due to the overlap of several instruments. A more accurate

extraction is achieved by applying the Chordino plugin to each single

instrument track available in an IM AF file (i.e. on the guitar track only, for

extracting the guitar chords). Moreover, it could be possible to perform

automatic transcription of the chords in the timed-text line (aligned with the

lyrics).

Figure 5.7 - Usage of Chordino in Sonic Visualiser for chords extraction: a) from individual

music instruments (guitar and bass) and, b) the mix-down track (mix).

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 72

The same discussion, as the one about chords extraction, could be done for the

extraction of the melody pitch of a song. Using the Vamp plugin called

Melodia [21], an algorithm for melody pitch estimator, it is possible to have a

more efficient pitch extraction from the only vocal track, rather than the mixed

song. Extracting the lyrics from the vocal track (singing to text) could be

another possible scenario, having an automatic way to elaborate information

about the timing and the highlighting of the text for karaoke application

without the necessity to create external 3GPP files, as it happens in the current

implementation of the IM AF encoder. There is not yet an implementation for

this kind of plugin; IM AF support in Sonic Visualiser could encourage such

developments offering a test-bed for comparisons among different algorithms

(singing voice to text, source separation for music instruments extraction from

an MP3, etc).

Another use case scenario can be done using one more Vamp plugin called

MATCH [10], an algorithm for audio alignment between two renditions of the

same piece of music. IM AF could allow users to add their own musical

instrument/vocal track in a song or replace the existing ones; alignment

between the tracks is needed for having a proper resulting mix, ensuring that

all the instruments start at the same point and follow the same beat. A tool like

MATCH can carry out this task easily. Although Sonic Visualiser can run the

MATCH plugin appropriately for calculating automatic alignments between

two tracks, it does not contain any way for the user to provide multiple audio

files as a set of individual channels for input to a Vamp plugin. This is a further

demonstration of how important the IM AF integration in Sonic Visualiser is

for the MIR community.

CHAPTER V INTEGRATION IN SONIC VISUALISER AND FUTURE DEVELOPMENTS

 73

5.5 Future developments

IM AF integration in Sonic Visualiser opens new horizons for MIR researchers

offering a test-bed for the development of a large number of projects and new

VAMP plugins, among others, such as:

 on source separation for extracting individual music instruments/vocals

from a mix-down song version;

 on singing voice to text conversion;

 on automatic highlighting of lyrics for karaoke applications.

In this way, some of the IM AF features could be automatically included in

files, rather than to require producers to insert the chords in a text file along the

lyrics at production time. For example, chords could be introduced in the

interactive file using VAMP plugins like Chordino in Sonic Visualiser to

automatically extract the chords of a song or from its individual music

instruments. The same could be done for the lyrics from the vocal track.

About the IM AF Encoder, some proposals for further improvements can be:

- the possibility to apply more than one rule per time, using groups as

well. Every element (track or group) is identified by its ID; an idea

could be to provide a list of the available IDs, from which the user can

pick the elements for a specific rule;

- metadata imported from the single MP3s (extracting ID3 tags) or

inserted by user through the UI in Sonic Visualiser;

- exploring the possibility for pictures to perform a track, not just still

pictures, for having a sort of “presentation”;

- provide album support, using the file structure for a multiple type file

(more than a Movie Box „moov‟ in the same file).

 CONCLUSIONS

 74

CONCLUSIONS

The creation of example IM AF files tested the full compliancy of the proposed

encoder to the standard and it was useful to understand the benefits brought by

this innovative file format. IM AF supports multitrack audio with volume

sliders for DJ mixing and lyrics for karaoke applications, allowing storage of

several instrument/vocal tracks in a single file alongside still pictures, lyrics

and chords. All these features enrich the user’s interaction space and make this

format an interesting alternative for listeners to the use of other audio file

formats, such as MP3 and Ogg.

There are also some psychological implications produced by the interactive

player’s interface. Many studies look at how specific visual features can

enhance the listening experience [20].

It’s proven that a transcript of the spoken word content as well as a waveform

display or a particular picture related to the album, provide additional

cognitive, emotional and aesthetic benefits to users. For example, nowadays

that music business is mainly based on online selling and there’s a loss of taste

in younger listeners to buy physical supports, and since users may not have

 CONCLUSIONS

 75

access to some old fragile analog recordings, even an image related to the

original recording media, or the particular time period of the performance for

live albums, might increase interest towards the artist and its work.

Again, availability of lyrics as text synchronized with the song allows for the

listener to follow along in a more enjoyable way, especially for compositions

in a foreigner language. Moreover, presence of chords released officially by

the artist will increase interest of users with playing skills to learn a song,

avoiding useless research of frequently wrong tabs on internet.

Visual content in a nice interface can certainly enhance the user experience, as

long as an option that allows to select or deselect features is available, for old-

fashioned users who just want to listen.

By the presented use-case scenarios, we saw that using a multitrack file format

like IM AF in a software like Sonic Visualiser could be advantageous for MIR

researchers and can allow the automatic extraction/inclusion of the media data

supported by the standard, such as timed text for chords or lyrics.

The file format has potentials that still have to be explored, and this could give

to music companies the opportunity to revitalize the music market.

New on-line music forums and social networks could come to the world:

personal mixes of songs could be exported and easily shared between users,

due to the flexible features inherited from ISO-BMFF that allows to have

lighter files containing only information about the mixing parameters, while

the audio tracks can be made available through various on-line music services

(e.g., groups, presets and rules are stored into the file; audio tracks, text and

pictures are stored on a server linked by URLs).

 CONCLUSIONS

 76

This could consequently enable an efficient exchange and sharing of IM AF

files in social networks. Each audio track could even be replaced by users’

personal recordings, encouraging people to develop singing and music

instruments playing skills through active learning.

A well-developed interactive music player with an ad-doc integration in the

main internet browsers could support the launch of the mentioned web-

services. It could be possible to parse/decode the file on the server side, in

order to individually send to the client the components (audio, pictures, text,

metadata). This allows the file belonging to brands with high number of audio

tracks to be played even on devices with limited processing power.

IM AF has good potential for further exploration that enables it to be the

format that will reign the digital audio world in the foreseeable future.

APPENDIX

 77

APPENDIX

Here is presented the IM_AF_Encoder.h header file code. It describes the structure

of the boxes in an IM AF file.

#ifndef IM_AF_Encoder_IM_AF_Encoder_h
#define IM_AF_Encoder_IM_AF_Encoder_h

/* for FILE typedef, */
#include <stdio.h>

#define maxtracks 8
#define maxgroups 3
#define maxpreset 10
#define maxrules 10
#define maxfilters 3 //Max number of Filters for an EQ preset
#define maxdynamic 2 //Max number of Dynamic Volume changes
#define num_ch 2 //Number of channel outputs (STEREO)

#define files_path "/…/" //Put MP3, JPEG and 3GP files in this folder, home folder in "C:\"
#define output_file "example.ima" //Name of the output file
#define image_path "/…/image.jpg" //Direct link to the image

typedef long long u64;
typedef unsigned int u32;
typedef unsigned short u16;
typedef unsigned char u8;

typedef struct nametrack { // Stores the different titles of the tracks
 char title[20];
}nametrack[maxtracks];

typedef struct FileTypeBox
{
 u32 size;
 u32 type; // ftyp
 u32 major_brand; // brand identifier
 u32 minor_version; // informative integer for the mirror version
 u32 compatible_brands[2]; //list of brands
}FileTypeBox;

typedef struct MovieBox //extends Box('moov')
{
 u32 size;
 u32 type; // moov

 struct MovieHeaderBox
 {
 u32 size;
 u32 type; // mvhd
 u32 version; // version + flag
 u32 creation_time;
 u32 modification_time;
 u32 timescale; // specifies the time-scale
 u32 duration;
 u32 rate; // typically 1.0
 u16 volume; // typically full volume
 u16 reserved; // =0
 u32 reserved2[2]; //=0
 u32 matrix[9]; // information matrix for video (u,v,w)
 u32 pre_defined[6]; // =0
 u32 next_track_ID; //non zero value for the next track ID
 }MovieHeaderBox;

APPENDIX

 78

 struct TrackBox
 {
 u32 size;
 u32 type;
 struct TrackHeaderBox
 {
 u32 size;
 u32 type;
 u32 version; // version + flag
 u32 creation_time;
 u32 modification_time;
 u32 track_ID;
 u32 reserved; // =0
 u32 duration;
 u32 reserved2[2]; // =0
 u16 layer; // =0 // for video
 u16 alternate_group; // =0
 u16 volume; // full volume is 1 = 0x0100
 u16 reserved3;// =0
 u32 matrix[9]; // for video
 u32 width; // video
 u32 height; // video
 }TrackHeaderBox;

 struct MediaBox // extends Box('mdia')
 {
 u32 size;
 u32 type;
 struct MediaHeaderBox // extends FullBox('mdhd', version,0)
 {
 u32 size;
 u32 type;
 u32 version; // version + flag
 u32 creation_time;
 u32 modification_time;
 u32 timescale;
 u32 duration;
 u16 language; // [pad,5x3] = 16 bits and pad = 0
 u16 pre_defined; // =0
 }MediaHeaderBox;
 struct HandlerBox // extends FullBox('hdlr')
 {
 u32 size;
 u32 type;
 u32 version; // version = 0 + flag
 u32 pre_defined; // =0
 u32 handler_type; // = 'soun' for audio track, text or hint
 u32 reserved[3]; // =0
 unsigned char data[5]; // Does not work! only 4 bytes

 }HandlerBox;
 struct MediaInformationBox //extends Box('minf')
 {
 u32 size;
 u32 type;
 // smhd in sound track only!!
 struct SoundMediaHeaderBox //extends FullBox('smhd')
 {
 u32 size;
 u32 type;
 u32 version;
 u16 balance; // =0 place mono tracks in stereo. 0 is center
 u16 reserved; // =0
 }SoundMediaHeaderBox;
 struct NullMediaHeaderBox //extends FullBox('nmhd')
 {
 u32 size;
 u32 type;
 u32 flags;
 }NullMediaHeaderBox;

APPENDIX

 79

 struct DataInformationBox //extends Box('dinf')
 {
 u32 size;
 u32 type;
 struct DataReferenceBox
 {
 u32 size;
 u32 type;
 u32 flags;
 u32 entry_count; // counts the actual entries.
 struct DataEntryUrlBox //extends FullBox('url', version=0, flags)
 {
 u32 size;
 u32 type;
 u32 flags;
 }DataEntryUrlBox;
 }DataReferenceBox;
 }DataInformationBox;
 struct SampleTableBox // extends Box('stbl')
 {
 u32 size;
 u32 type;
 struct TimeToSampleBox{
 u32 size;
 u32 type;
 u32 version;
 u32 entry_count;
 u32 sample_count[3000];
 u32 sample_delta[3000];
 }TimeToSampleBox;
 struct SampleDescriptionBox // stsd
 {
 u32 size;
 u32 type;
 u32 version;
 u32 entry_count; // = 1 number of entries
 // unsigned char esds[88];
 struct TextSampleEntry{
 u32 size;
 u32 type; //tx3g
 u32 a;
 u32 b;
 u32 displayFlags;
 u8 horizontaljustification;
 u8 verticaljustification;
 u8 backgroundcolorrgba[4];
 u16 top;
 u16 left;
 u16 bottom;
 u16 right;
 //StyleRecord
 u16 startChar;
 u16 endChar;
 u16 fontID;
 u8 facestyleflags;
 u8 fontsize;
 u8 textcolorrgba[4];
 struct FontTableBoX{
 u32 size;
 u32 type;
 u16 entrycount;
 u16 fontID;
 u8 fontnamelenght;
 u8 font[5]; //Serif
 }FontTableBox;
 }TextSampleEntry;
 struct AudioSampleEntry{
 u32 size;
 u32 type; //mp4a
 char reserved[6];
 u16 data_reference_index; // = 1

APPENDIX

 80

 u32 reserved2[2];
 u16 channelcount; // = 2
 u16 samplesize; // = 16
 u32 reserved3;
 u32 samplerate; // 44100 << 16
 // unsigned char esds[81];
 struct ESbox{
 u32 size;
 u32 type;
 u32 version;
 struct ES_Descriptor{
 unsigned char tag;
 unsigned char length;
 u16 ES_ID;
 unsigned char mix;
 struct DecoderConfigDescriptor{
 unsigned char tag;
 unsigned char length;
 unsigned char objectProfileInd;
 u32 mix;
 u32 maxBitRate;
 u32 avgBitrate;
 /* struct DecoderSpecificInfo{
 unsigned char tag;
 unsigned length;
 // unsigned char decSpecificInfosize;
 unsigned char decSpecificInfoData[2];
 }DecoderSpecificInfo;
 */ }DecoderConfigDescriptor;
 struct SLConfigDescriptor{
 unsigned char tag;
 unsigned char length;
 unsigned char predifined;
 }SLConfigDescriptor;
 }ES_Descriptor;
 }ESbox;
 }AudioSampleEntry;
 }SampleDescriptionBox;
 struct SampleSizeBox{
 u32 size;
 u32 type;
 u32 version;
 u32 sample_size; // =0
 u32 sample_count;
 u32 entry_size[9000];
 }SampleSizeBox;
 struct SampleToChunk{
 u32 size;
 u32 type;
 u32 version;
 u32 entry_count;
 u32 first_chunk;
 u32 samples_per_chunk;
 u32 sample_description_index;
 }SampleToChunk;
 struct ChunkOffsetBox{
 u32 size;
 u32 type;
 u32 version;
 u32 entry_count;
 u32 chunk_offset[maxtracks];
 }ChunkOffsetBox;
 }SampleTableBox;
 }MediaInformationBox;
 }MediaBox;
 }TrackBox[maxtracks]; // max 10 tracks

 struct PresetContainerBox // extends Box('prco')
 {
 u32 size;
 u32 type;

APPENDIX

 81

 unsigned char num_preset;
 unsigned char default_preset_ID;
 struct PresetBox //extends FullBox('prst',version=0,flags)
 {
 u32 size;
 u32 type;
 u32 flags;
 unsigned char preset_ID;
 unsigned char num_preset_elements;
 struct presElemId{
 u32 preset_element_ID;
 }presElemId[maxtracks];
 unsigned char preset_type;
 unsigned char preset_global_volume;

 // if (preset_type == 0) || (preset_type == 8) - Static track volume preset
 struct StaticTrackVolume{
 struct presVolumElem{
 u8 preset_volume_element;
 struct EQ{ // if preset_type == 8 (with EQ)
 u8 num_eq_filters;
 struct Filter{
 u8 filter_type;
 u16 filter_reference_frequency;
 u8 filter_gain;
 u8 filter_bandwidth;
 }Filter[maxfilters];
 }EQ;
 }presVolumElem[maxtracks];
 }StaticTrackVolume;

 // if (preset_type == 1) || (preset_type == 9) - Static object volume preset
 struct StaticObjectVolume{
 struct InputCH{
 u8 num_input_channel;
 }InputCH[maxtracks];
 u8 output_channel_type;
 struct presElVol_1{
 struct Input{
 struct Output{
 u8 preset_volume_element;
 }Output[num_ch];
 struct EQ_1{ // if preset_type == 9 (with EQ)
 u8 num_eq_filters;
 struct Filter_1{
 u8 filter_type;
 u16 filter_reference_frequency;
 u8 filter_gain;
 u8 filter_bandwidth;
 }Filter[maxfilters];
 }EQ;
 }Input[num_ch];
 }presElVol[maxtracks];
 }StaticObjectVolume;

 // if (preset_type == 2) || (preset_type == 10) - Dynamic track volume preset
 struct DynamicTrackVolume{
 u16 num_updates;
 struct DynamicChange{
 u16 updated_sample_number;
 struct presVolumElem_2{
 u8 preset_volume_element;
 struct EQ_2{ // if preset_type == 10 (with EQ)
 u8 num_eq_filters;
 struct Filter_2{
 u8 filter_type;
 u16 filter_reference_frequency;
 u8 filter_gain;
 u8 filter_bandwidth;
 }Filter[maxfilters];
 }EQ;

APPENDIX

 82

 }presVolumElem[maxtracks];
 }DynamicChange[maxdynamic];
 }DynamicTrackVolume;

 // if (preset_type == 3) || (preset_type == 11) - Dynamic object volume preset
 struct DynamicObjectVolume{
 u16 num_updates;
 struct InputCH_3{
 u8 num_input_channel;
 }InputCH[maxtracks];
 u8 output_channel_type;
 struct DynamicChange_3{
 u16 updated_sample_number;
 struct presElVol{
 struct Input_3{
 struct Output_3{
 u8 preset_volume_element;
 }Output[num_ch];
 struct EQ_3{ //if preset_type==11 (with EQ)
 u8 num_eq_filters;
 struct Filter_3{
 u8 filter_type;
 u16 filter_reference_frequency;
 u8 filter_gain;
 u8 filter_bandwidth;
 }Filter[maxfilters];
 }EQ;
 }Input[num_ch];
 }presElVol[maxtracks];
 }DynamicChange[maxdynamic];
 }DynamicObjectVolume;

 // if (preset_type == 4) || (preset_type == 12) - Dynamic track approximated volume preset
 struct DynamicTrackApproxVolume{
 u16 num_updates;
 struct DynamicChange_4{
 u16 start_sample_number;
 u16 duration_update;
 struct presElVol_4{
 u8 end_preset_volume_element;
 struct EQ_4{ // if preset_type == 12 (with EQ)
 u8 num_eq_filters;
 struct Filter_4{
 u8 filter_type;
 u16 filter_reference_frequency;
 u8 end_filter_gain;
 u8 filter_bandwidth;
 }Filter[maxfilters];
 }EQ;
 }presElVol[maxtracks];
 }DynamicChange[maxdynamic];
 }DynamicTrackApproxVolume;

// if (preset_type == 5) || (preset_type == 13) - Dynamic object approximated volume preset
// THIS STRUCTURE GIVES STACK OVERFLOW PROBLEMS - MORE STACK SIZE NEEDED -> Needs investigation
 struct DynamicObjectApproxVolume{
 u16 num_updates;
 struct InputCH_5{
 u8 num_input_channel;
 }InputCH[maxtracks];
 u8 output_channel_type;
 struct DynamicChange_5{
 u16 start_sample_number;
 u16 duration_update;
 struct presElVol_5{
 struct Input_5{
 struct Output_5{
 u8 preset_volume_element;
 }Output[num_ch];
 struct EQ_5{ // if preset_type == 11 (with
EQ)

APPENDIX

 83

 u8 num_eq_filters;
 struct Filter_5{
 u8 filter_type;
 u16 filter_reference_frequency;
 u8 end_filter_gain;
 u8 filter_bandwidth;
 }Filter[maxfilters];
 }EQ;
 }Input[num_ch];
 }presElVol[maxtracks];
 }DynamicChange[maxdynamic];
 }DynamicObjectApproxVolume;

 char preset_name[50];

 }PresetBox[maxpreset];

 }PresetContainerBox;

 struct RulesContainer{
 u32 size;
 u32 type;
 u16 num_selection_rules;
 u16 num_mixing_rules;
 struct SelectionRules{
 u32 size;
 u32 type;
 u32 version;
 u16 selection_rule_ID;
 unsigned char selection_rule_type;
 u32 element_ID;
 // Only for Min/Max Rule
 // if (selection_rule_type==0)
 u16 min_num_elements;
 u16 max_num_elements;
 // Only for Exclusion and Implication Rules
 // if (selection_rule_type==1 || selection_rule_type==3)
 u32 key_element_ID;
 char rule_description[20];
 }SelectionRules;
 struct MixingRules{
 u32 size;
 u32 type;
 u32 version;
 u16 mixing_rule_ID;
 unsigned char mixing_type;
 u32 element_ID;
 u16 min_volume;
 u16 max_volume;
 u32 key_elem_ID;
 char mix_description[17];
 }MixingRules;
 }RulesContainer;
 struct GroupContainerBox{ //extends Box('grco')
 u32 size; // = 10 + sizeGRUP
 u32 type;
 u16 num_groups;
 struct GroupBox{ // extends FullBox('grup')
 u32 size; // = 21 + 15 + 30 (+4 if group_activation_mode = 2)
 u32 type;
 u32 version;
 u32 group_ID;
 u16 num_elements;
 struct groupElemId{
 u32 element_ID;
 }groupElemId[maxtracks];
 unsigned char group_activation_mode;
 u16 group_activation_elements_number;
 u16 group_reference_volume;
 char group_name[22];
 char group_description[32];

APPENDIX

 84

 }GroupBox[maxgroups];
 }GroupContainerBox;
}MovieBox;

typedef struct MetaBox // extends FullBox ('meta')
{
 u32 size;
 u32 type;
 u32 version;
 struct theHandler //extends FullBox HandlerBox('hdlr')
 {
 u32 size;
 u32 type;
 u32 version; // version = 0 + flag
 u32 pre_defined; // =0
 u32 handler_type; // = 'meta' for Timed Metadata track
 u32 reserved[3]; // =0
 unsigned char name[4];
 }theHandler;
 struct file_locations //extends Box DataInformationBox('dinf')
 {
 u32 size;
 u32 type;
/* struct DataReferenceBox2
 {
 u32 size;
 u32 type;
 u32 flags;
 u32 entry_count; // = 1
 struct DataEntryUrlBox2 //extends FullBox('url', version=0, flags)
 {
 u32 size;
 u32 type;
 u32 flags;
 }DataEntryUrlBox;
 }DataReferenceBox; */
 }file_locations;
 struct item_locations //extends FullBox ItemLocationBox('iloc')
 {
 u32 size;
 u32 type;
 u32 version; // version = 0 + flags
 unsigned char offset_size; // = 4 bytes
 unsigned char lenght_size; // = 4 bytes
 unsigned char base_offset_size; // = 4 bytes
 unsigned char reserved; // = 0
 u16 item_count; // = 1
 u16 item_ID; // = 1
 u16 data_reference_index; // = 0 (this file)
 u32 base_offset; // size=(base_offset_size*8)=4*8
 u16 extent_count; // = 1
 u32 extent_offset; // size=(offset_size*8)=4*8
 u32 extent_length; // size=(lenght_size*8)=4*8
 }item_locations;
 struct item_infos //extends FullBox ItemInfoBox('iinf')
 {
 u32 size;
 u32 type;
 u32 version; // version = 0 + flag
 u16 entry_count; // = 1
 struct info_entry// extends FullBox ItemInfoEntry('infe')
 {
 u32 size;
 u32 type;
 u32 version; // = 0
 u16 item_ID; // = 1
 u16 item_protection_index; // = 0 for "unprotected"
 char item_name[6]; // name with max 5 characters
 char content_type[18]; // = 'application/other' -> 17 characters
 char content_encoding[4]; // = 'jpg' for JPEG image -> 3 characters
 }info_entry;

APPENDIX

 85

 }item_infos;
 struct XMLBox // extends FullBox('xml ')
 {
 u32 size;
 u32 type;
 u32 version;
 char string[2000];
 }XMLBox;
}MetaBox;

typedef struct MediaDataBox // extends Box('mdat')
{
 u32 size;
 u32 type;
 unsigned char data;
}MediaDataBox;

#endif

REFERENCES

 86

REFERENCES

[1] ISO/IEC 23000-12:2010 - Information Technology - Multimedia Application

Format (MPEG-A) -- Part 12: Interactive Music Application Format.

[2] ISO/IEC 23000-12:2010/Amd.1:2011 - Information technology - Multimedia

application format (MPEG-A) - Part 12: Interactive music application format,

AMENDMENT 1: Conformance and reference software.

[3] ISO/IEC 23000-12:2010/Amd.2:2012 - Information technology - Multimedia

application format (MPEG-A) - Part 12: Interactive music application format,

AMENDMENT 2: Compact representation of dynamic volume change and audio

equalization.

[4] ISO/IEC 14496-12:2008 - Information technology - Coding of Audio-Visual

Objects – Part 12: ISO base media file format.

[5] ISO/IEC 10918-1:1994 - Information technology - Digital compression and

coding of continuous-tone still images (JPEG).

[6] ETS 3GPP TS 26.245-2004 - Transparent end-to-end Packet switched Streaming

Service (PSS); Timed text format.

[7] ISO/IEC 15938-5:2003 - Information technology - Multimedia content

description interface – Part 5: Multimedia description schemes.

[8] ISO/IEC 23003-2:2010 - Information technology - MPEG audio technologies -

Part 2: Spatial Audio Object Coding (SAOC).

[9] C. Cannam, C. Landone and M. Sandler: “Sonic Visualiser: An Open Source

Application for Viewing, Analysing, and Annotating Music Audio Files”,

Proceedings of the ACM Multimedia 2010 International Conference.

[10] S. Dixon and G. Widmer: “MATCH: a music alignment tool chest”,

Proceedings of the International Symposium on Music Information Retrieval, pp.

492-497, 2005.

[11] C. Grigg: “Preview: Interactive XMF - A Standardized Interchange File

Format for Advanced Interactive Audio Content”, 115
th

 Audio Engineering

Society Convention, October 2003

REFERENCES

 87

[12] J. Han, Z. Rafii and B. Pardo, “Audio Source Separation” and “REPEAT”,

Research projects of Northwestern University, Dep. of Elec. Eng. and Comp. Sc.,

http://music.cs.northwestern.edu

[13] T. Hosoya, M. Suzuki, A. Ito and S. Makino: “Lyrics recognition from a

singing voice based on finite state automation for music information retrieval”,

Proceedings of the International Symposium on Music Information Retrieval, pp.

532-535, 2005.

[14] iKlax Media, http://www.iklaxmusic.com

[15] I. Jang, P. Kudumakis, M. Sandler, K. Kang: "The MPEG Interactive Music

Application Format Standard", IEEE Signal Processing Magazine, pp. 150-154,

Vol. 28, Issue 1, Jan. 2011.

[16] P. Kudumakis, "MP3: something's gotta change!", Audio!, pp. 6, Vol. 1, Issue

3, April 2011. Editors: P. Curzon, M. Barthet and S. Dixon.

[17] L. A. Ludovico: “Key concepts of the IEEE 1599 Standard”, Proceedings of

the IEEE CS Conference The Use of Symbols To Represent Music And

Multimedia Objects, pp. 15-26, 2008.

[18] M. Mauch and S. Dixon: “Approximate Note Transcription for the Improved

Identification of Difficult Chords”, Proceedings of the International Symposium

on Music Information Retrieval, pp. 135-140, 2010.

[19] MOGG files, Multitrack Digital Audio Format,

http://moggfiles.wordpress.com

[20] A. Murray and J. Wiercinski, “Looking at archival sound: Enhancing the

listening experience in a spoken word archive”, article on FirstMonday.org,

Volume 17, Number 4 - April 2
nd

 2012.

[21] J. Salamon and E. Gómez: “Melody Extraction from Polyphonic Music

Signals using Pitch Contour Characteristics”, IEEE Transactions on Audio,

Speech and Language Processing, 20(6):1759-1770, Aug. 2012.

[22] Mac Developer Libray – “QuickTime 6.3 + 3GPP”,

http://developer.apple.com

[23] Smule, Inc. – “Glee Karaoke”, “I am T-Pain” – www.smule.com

[24] Activision Publishing, Inc. – “Guitar Hero” – www.guitarhero.com

[25] Harmonix Music Systems, Inc. – “Rock Band” – www.harmonixmusic.com

REFERENCES

 88

[26] E. Onate, “Development an IM AF encoder” – MSc Digital Music Processing,

Queen Mary University of London, 2012.

Available at: https://code.soundsoftware.ac.uk/hg/enc-imaf

[27] Audizen, http://www.audizen.com (last viewed, February 2011)

[28] MT9 file format – http://en.wikipedia.org/wiki/MT9

[29] ChoJin-seo, “New MP3 Revolutionizes Way You Listen to Music” - Korea

Times - http://www.koreatimes.co.kr

[30] Audacity – http://audacity.sourceforge.net

[31] Song Galaxy – http://www.songgalaxy.com/

[32] MXP4 – http://en.wikipedia.org/wiki/MXP4

[33] Bopler – https://www.facebook.com/BoplerGames

[34] MOD format – http://en.wikipedia.org/wiki/MOD_(file_format)

[35] ISO-BMFF, ISO base media file format

http://en.wikipedia.org/wiki/ISO_base_media_file_format

[36] MiraVid MP4 Browser, available online at

http://download.cnet.com/MiraVid-MP4-Browser

[37] CodePlex MP4 Explorer, available online at http://mp4explorer.codeplex.com

[38] Sound Software - http://soundsoftware.ac.uk/

[39] Mercurial CVS - http://mercurial.selenic.com/

[40] Easy Mercurial - http://soundsoftware.ac.uk/easymercurial

[41] Vamp Plugins - http://www.vamp-plugins.org/

[42] Qt Project - http://qt-project.org/

[43] MP3 file structure - http://www.multiweb.cz/twoinches/mp3inside.htm

	SECONDA UNIVERSITA’ DEGLI STUDI DI NAPOLI
	Laurea Magistrale
	in
	Ingegneria Elettronica

