’Azz by Evolution

Christopher Harte
Langwith College
University of York

June 2001
4" Year MEng Project Report

Abstract

The purpose of this project is to investigate whether Evolutionary Computing
techniques can be used to compose Jazz. The project combines Jazz, Evolutionary
Computing techniques and Algorithmic Composition. A thorough review of these
subjects is given in the first part of the report. The design of a system for composing
Jazz using Evolutionary Computing techniques and the details of how it was
implemented are presented. The preliminary test results from the system are analysed
and then various areas of further work are discussed. The report finishes with a short

conclusion.

Contents

1

3.1
3.2
3.21
3.22
3.3
3.3.1
3.3.2
3.33
3.4

Preface
Introduction

Background Research

Jazz

Evolutionary techniques in computing

Genetic Algorithms

Genetic Programming

Algorithmic Composition

Models and Techniques used for Algorithmic Composition
Use of Evolutionary Techniques in Algorithmic Composition
Fitness Functions in Music

Standard MIDI files

A system for composing Jazz by evolution
System Overview

An Abstract Model of a Jazz Piece

Genetic Representation of Pieces

A Music Language for Genetic Programming
Example Piece 'Daisy'

System Implementation
Notes, Chords and Rhythm Figures
Note Structure

Chord Structure

Figure Structure

Formal Piece Structure
Generator

Breeder

Renderer

Decoding the Genetic Program
Decoding the GA chromosomes
Midi File Writer

Fitness Test

User Interface

Evaluation

Project Progress
Testing

Experimental Results

7.
7.2
7.3
7.4
7.4.1
7.4.2
743
744
7.5
7.6

10

11

11.1
1.2
1.3

Further Work

Mutation in the System

Windows User Interface

Splitting the Test in time

Musical Fitness Tests

Automatic Elimination of Unsuitable Individuals
Codifying Musical and Jazz Rules

Neural Networks and Pattern Matching

An Integrated Approach to the Musical Fitness Test
Improving the Renderer's performance skills
Music File Compression67

Final Conclusions
Acknowledgements
References

Appendices

A Guide to the CD
Test Score 'Daisy.mid'
Test File 'Daisy.txt’

63
63
63
64
64

65
65
66
67

69

70

71

74
74
75
76

iii

1 Preface
Jazz by Evolution. It should be the title of an album. Maybe in the future it could be...

In this report I have tried to explain clearly, with the aid of diagrams where possible, the way
in which the Jazz by Evolution system works. This report has been written with the
continuation of “Jazz by Evolution™ in further projects in mind.

On the whole, I am pleased with how the project has progressed. The majority of aims and
objectives that were set have been met and those areas requiring further work and
investigation have been addressed in Section 7. I hope that any student who continues with
part or all of the project in the future will find the report useful and accessible as a start point
for their work.

2 Introduction

The aim of this project is to investigate the ways in which evolutionary computing techniques
can be applied to the task of composing Jazz music.

Most approaches to computer music composition are based on statistical methods, which are
hard-coded by the designer of the system. This often leads to the music sounding unnatural.
In an evolutionary system, the start point is randomness. The system refines the random
material over a large number of iterations; a process similar to the way we compose.

The report begins with a review of the various disciplines that the project combines. Section
3, Background Research, is split in to four main parts: Jazz, Evolutionary Computing
Techniques, Algorithmic Composition and MIDI and Standard MIDI Files.

In Section 3.1, defining features of Jazz such as Swing and Jazz Harmony are discussed.

Section 3.2 gives an introduction to Evolutionary computing techniques and suggests why
they might be well suited to use in the composition of music. There is then a more detailed
look at Genetic Algorithms and Genetic Programming.

The various techniques used in Algorithmic Composition are discussed in Section 3.3. These
include the application of Generative Linguistics Theory to music in order to define a model
for how we perceive structure in pieces. Other commonly used techniques are investigated
then a review of current evolutionary composition systems is presented. This is followed
with a discussion of the most challenging part of any evolutionary composition system: The
Fitness Function.

Section 3.4 is an introduction to the structure of Standard MIDI files.

In Section 4, A System for Composing Jazz by Evolution, a design for an evolutionary
composition system is proposed. The section starts with an overview of how such a system
will operate.

Section 4.2 introduces an Abstract model for a piece of Jazz based on the ideas researched in
Section 3. This is followed, in Section 4.3, by a design for the Genetic Representation of a
piece using a two-level evolutionary system incorporating both Genetic Algorithms and
Genetic Programming. The way in which the Genetic Programming Language will work is
then described in further detail in Section 4.4. Section 4 concludes with an analysis of a real
piece of music, which is used to code a representation of that piece using the representation
scheme that has just been defined.

The implementation of the composition system in software is described in Section 5. The
various types and classes used in the software are explained in detail in Sections 5.1 through
to 5.6.

The progress of the project and the results that have been obtained from tests are evaluated in
Section 6. The most recent set of test results is analysed in detail and some preliminary
conclusions are drawn from them.

Section 7 of the report presents areas of further work and how they may be approached as a
set of possible starting points for future projects.

Section 8 is the Final Conclusion, followed by Acknowledgements, References and
Appendices.

3 Background Research

This section outlines the various areas that have been researched for the project. It is split in
to four main sub-sections: Jazz (3.1), Evolutionary Techniques in Computing (3.2),
Algorithmic Composition (3.3) and MIDI and Standard MIDI Files (3.4).

Section 3.1 gives an overview of why Jazz is suited to use in an evolutionary composition
system and details the aspects of Jazz theory relevant to this project. Section 3.2 gives a
comprehensive background of Evolutionary Computing Techniques and explains how they
work. Section 3.3 gives an overview of Algorithmic Composition and a description of some
of the models and techniques commonly used in the field. The use of evolutionary
techniques in algorithmic composition is then addressed in more detail with discussion of
both the advantages and disadvantages of the paradigm.

Section 3.4 gives an overview of how the Standard MIDI file is arranged.

3.1 Jazz

Jazz began to emerge as a musical style in America during the mid to late part of the
nineteenth century. The city generally held to be the birthplace of jazz is New Orleans,
where at that time the various strands that went to form jazz were gathering together. New
Orleans was a flourishing seaport, which had become home to many former slaves. West
African music, with its complex rhythms, became mixed with European musical influences,
particularly the melodies and strong basic pulses of marches and the harmonic base of hymns.
This mixture of musical cultures first gave rise to the Negro spiritual and blues, and then
developed into the style of music now known as jazz [10, 11, 32, 34].

Much of jazz is based on improvisation. The style utilises standard musical elements such as
4/4 time, songs of uniform length and form (usually 32 bars long with an A-A-B-A form),
consistent and logical harmonies, stylised melodies and rhythms, and even an established
order of introductions, statements of themes, sequence of soloists, and codas and endings.
Many jazz bands play the “standard” tunes. Jazz standards are well-known pieces, which are
used to provide a familiar framework for improvisation. Such pieces can be found in books
of standards scored as a melody line and the chord progression that accompanies it (see figure
3.1). This is, in general, all the information necessary for a musician to give a rendition of
the piece.

A- gt b A- B E7t9

I
|

ks

L YRS
TR
L 18
Q.
|
L AN
| 18
vl
(;_-
L AN

Ll

q

Figure 3.1: An extract from the jazz standard “Black Orpheus” by Louis Bonfi

Most musicians agree that the most important aspect of jazz is “swing” [10, 32] . When
asked to explain what swing is, however, a definitive answer is hard to find. Much of jazz is
approximated in notation as 4/4 or duple meter but it is really more complex. The actual
timing is something nearer 12/8 as swung quavers are played as a crotchet-quaver pattern (see
figure 3.2). However, the degree of swing (the ratio of the swung-pair rhythms)is variable; it

is not fixed at 2:1.

3
PR
Figure 3.2 A swung pair of quavers is approximately
equivalent to a triplet crotchet quaver

Jazz harmony uses many different chord types and many different extensions of those types.
There are several families of chords: the Major type chords, the Minor type chords, Dominant
type chords, Minor 7" type chords and Diminished type chords [10,11]. For each chord from
each family there is a set of extensions that can be added to it within the rules of harmony
(technically, any extension can be added to any chord but some will just sound horrible). The
extensions commonly used in jazz are the 9, 11" and 13", Figure 3.3 shows the different
chord types and their extensions for chords with the root of C.

4 49 < = 4%
A/ o S = 8 —o
n—g g—ﬁ"—%" 3 S S —=2
AR - S8 a8 85 =
C CM6 CM6B(9) CM6(9.411) CM7 CM9 CM9(#11) CMI13 CMI3ELD

~ -

17 = = = Q———us

i ’:—;_:P:_:“:_- ~

-~ PR MR mR WM M N

S S S S

Cm Cmé Cm6(9) Cméb(9.11) Cm7 Cm7(9) Cm7(9,11) Cm(maj7) Cm(maj7.9,11)

Cm(maj7.9) Cm(maj7.9,#11,13)

Cc7 c9 C7(b9) C7(#9) C9(11) CY9#I1l) CI3 C745 C745(9) C7#5(b9) C+5
A = l’ﬁ’ o
A o 8—38 ! o —
Iy & N P © NE ¥ o N V=N o E P 9 i h-o—bt
U Lz U L4 bl’x bl’x b 124 _b Vx b L
o R<d o ks o
Coim7 Cpmm9 CpimIl ComMmli(b13) Coim CpiM(maj7) C7b5 C7b5(9) C7b5(9.11)

Figure 3.3: The standard jazz chord types and their extensions

The families of chords perform specific functions in the harmonic structure of a piece. This
concept is known as functional harmony. The tonic chords offer rest, whereas the dominants
(chords with the 5t a5 their root) and minor sevenths create tension which need to be
resolved. Shown below is the most common function of each chord type. The V7 11 and
™7 chords (1,2 and 3) comprise approximately 75% of all chords.

1.V’ Dominant of I

3 1 Functions as subdominant of I, precedes dominant, and is substitute for IV
3. " Tonic

4.Vl Precedes I

5, T Substitutes for 1. Often follows V’

6. VI™ Substitutes for 1. Often follows I or occurs between Il and II

7.7 Dominant of IV

8. IV’ Tonic relief. Temporary (usually key center)

9. V™ [I™ of IV. Usually precedes I’ (dominant of IV)

3.2 Evolutionary techniques in computing

“ could see evolution as a creative process, the essence of making something out
of nothing™

John Holland

Taken from an interview in Steven Levy’s book Artificial Life: The quest for a new creation
[26], this quote identifies the underlying idea behind the use of evolutionary computing
techniques. The notion of making something out of nothing is an extremely attractive one;
you can start with an unformed structure, replicate the machinery of nature, and let behaviour
emerge. In the context of computer-generated music, this can provide an approximation to
the human creative process (see section 3.3).

In both biological and artificial systems, the information central to an organism has to be
regarded in two manners - both as genetic information to be duplicated and as instructions to
be executed. The information form of the individual is known as the genotype and the
expression of those genes in a physical manifestation of the organism is known as the
phenotype. The most important aspect of any evolutionary system is the way in which the
problem to be solved is represented.

3.2.1 Genetic Algorithms

The Genetic Algorithm (GA) was first proposed in 1975 by John Holland in his book
Adaptation in Natural and Artificial Systems [15]. Genetic algorithms are search algorithms
based on the mechanics of genetics and natural selection. They are particularly suited to
searching complex non-linear search spaces; they are generally fast and very robust. These
properties have led them to be used for a wide variety of practical applications including
scheduling, financial modelling and optimisation.

A genetic algorithm (or any evolutionary algorithm) for a particular problem must have the
following five parameters:

* a genetic representation for potential solutions to the problem,

e a way to create an initial population of potential solutions,

e an evaluation function that rates the solutions in terms of their ‘fitness’,

e genetic operators which alter the composition of children,

e values for various parameters used by the algorithm (population size, operator rates, etc)

A random population of individuals is generated. An individual is an encoding of a possible
solution from the solution space in the form of a ‘chromosome’ (a string of genes). Each
individual is rated using a fitness function (a test to grade how well the solution coded by the
individual’s genome solves the given problem). The individuals fitness value determines
how likely it is to be chosen as a potential parent candidate for the next generation. Figure
3.4 shows the cycle of the genetic algorithm.

/ Population

Select Parents
in proportion
to their fitness

\ Breed Parents /

Test new individuals

to produce new
individuals

Figure 3.4: The genetic algorithm cycle

A simple genetic algorithm that yields good results is composed of three operators:
Reproduction, Crossover and Mutation [12].

Reproduction is the operation of selecting individuals from the current population to be
carried in to the next as parents. There are several methods of selection. It is possible to pick
just the top scoring candidates from the population. This approach may give a reasonable
solution fairly fast but the search will tend to converge quickly, possibly missing better areas
of the search space due to the effective ‘inbreeding’ caused by limiting the population
diversity.

A better solution (and the one most widely implemented) is the roulette wheel model [29].
Using this approach, the probability that an individual is picked to be a parent in the next
generation is equal to the individual’s normalised fitness. The process can be visualised as
spinning a roulette wheel with unequal segments representing each member of the population.
A highly fit individual will occupy a large section of the roulette wheel and hence have a high
chance of being chosen (see figure 3.5). A low scoring individual will occupy a small section
so will be less likely to be chosen.

Allowing less fit individuals the chance to breed on to future generations provides the
diversity the system needs for searching effectively. It is possible that an unfit individual
may contain a sequence of genes that when bred with a fit individual produces a super-fit
child. It is therefore important that such individuals are not lost at an early stage.

N

Figure 3.5: Roulette wheel selection. Individual A has the highest
fitness therefore it takes up the largest area of the wheel

A third method of selection is that of tournament selection [22]. In this method of selection,
candidates are picked from the population at random and pitted against each other in a fitness
contest. The winner becomes a parent candidate for the next generation. This method of
selection retains diversity as the individuals selected for a tournament may both be of
relatively poor fitness yet one still wins the contest and becomes a parent candidate.

Once a group of individuals has been selected, they are copied and subjected to the operation
of crossover. They are arranged in to arbitrary pairs. Each pair produces two new
individuals that are made up of parts of both parents.

The simplest form of crossover is one-point crossover. For a representation using a string of
length / for each individual, a random integer valuei is selected in the range [1, /-1]. The two
new strings are created by simply swapping the characters of the parents between i+1 and /
inclusively (see figure 3.6 overleaf).

Crossing point

.

Parent 1 r

Parent 2

v
'
[
"
"
'
'
0
T
'
]
'
"

Child 1

Child 2

'
]
O
[
.
v
"
T
'
'
'
0
'

Figure 3.6: One point crossover

One-point crossover tends to give the endpoints of a string biased treatment as these are
always swapped between parents. This is known as the endpoint effect. Another problem is
hitchhiking where a low fitness gene is carried along with a high fitness schema (schemata
are discussed later in this section) with little chance of being removed.

Using more than one crossover point helps solve these problems and reduces the importance
of the gene order on the chromosome. A schema with genes at either end of the chromosome
would have little chance of survival with one-point crossover but stand much more chance
with two or more.

Nature is a chaotic environment. Mutation is an inevitable result of operating in such an
environment; there is a probability that in copying a gene, the process will fail to copy it
exactly.

Search can get stuck here

/

Local Minimum

Better Solution

v

Figure 3.7: local minimum in a search

Mutation in genetic algorithms is used to retain diversity where a population may tend to
converge on a certain point in the solution space. In a complicated search space there may be
many local minima in which the algorithm can become stuck (see figure 3.7).

The operation of mutation ensures that a population will not stagnate in such local minima by
injecting new genetic material. In the case of binary string representation, this process
consists of merely flipping one or more random bits on the chromosome (see figure 3.8).

parent| 110|0[1|1]0]|1

chid |1{0|1[1]1]0]1

Figure 3.8: Mutation

In a representation using a higher cardinality alphabet, mutation will change a randomly
selected gene to another symbol in the alphabet. In some cases, choosing any other possible
value at random may be sufficient. In many practical cases, however, mutation consists of
taking a new value from a statistical distribution around the current value. The idea being
that, in most instances, mutation will produce a small change in an allele (a gene in a
particular position on the chromosome), effectively searching a small neighbourhood in the
search space [27, 29]. In this way, if the search is close to a potentially optimal soluton, the
mutation operation will tend to move it around in that same area, increasing the chance of

finding that solution rather than moving it away in large steps.
Why does the Genetic Algorithm work?

One theory is based on the concept of schemata [12, 15]. A schema is a similarity template
that describes a subset of strings with similarities at certain string positions. To examine the
schema theory, let us consider a genome encoded with the binary alphabet {0,1}. By
introducing a third “don’t care” state, *, in to the alphabet it is possible to create strings
(schemata) over the ternary alphabet {0,1,*}. A schema can be thought of as a device for
pattern matching: a schema matches a particular string if at every location in the schema a 1
matches a 1 in the string, a 0 matches a 0, or a * matches either. For example, consider
strings and schemata of length 5. The schema *0000 matches two strings: 10000 and 00000.
The schema *101* matches four: 01010, 01011, 11010, and 11011.

The number of possible schemata in the example above, where[=5, is 3% = 243 as each of
the five symbols may bea 0,a 1 ora*. In general, for an alphabet of cardinalityk there are
(k+1)' schemata, compared to number of possible strings K. This result shows that we have
actually access to more information than is initially apparent.

To understand the way this information is processed, the effect of the genetic operators on
schemata must be considered. Since a highly fit string stands more chance of selection, an
ever-increasing number of samples is given to the best schemata that are observed;
reproduction alone, however does not sample new points in the space. Crossover leaves a
schema intact if it does not cut the schema, but it may disrupt the schema when it does. For
example the schema 1***0 is more likely to be destroyed during crossover than **10* Asa
result, schemata of short defining length are left alone by crossover and reproduced at a high
sampling rate by reproduction. Mutation at normal, low rates does not disrupt a particular
schema very frequently. From this, it can be seen that highly fit schemata of short defining
length (known as building blocks), are propagated generation to generation by giving

exponentially increasing samples of the observed best. This all occurs in parallel with no
special bookkeeping or memory other than the population of sizen. The number of schemata
processed usefully in each generation is approximately n* [12], which compares favourably
with the number of fitness evaluations (n). This processing power, apparently unique to

genetic algorithms, is known as implicit parallelism.

Goldberg [12] offers a more mathematical treatment of schema theory. The order of a
schema, o(H), is the number of fixed positions on the schema (e.g. 1*1** has order 2 whereas
1*010 has order 4). The defining length of a schema, 8(H), is the distance between the first
and last specific string position (e.g. 10*1* has defining length of 3).

At a given time step, 1, if there arem examples of a particular schema /, in a population A(#),
we can write m = m(H,#). During reproduction, strings are selected according to their fitness.
The effect of reproduction on the expected number of schema in the next generation can be
expressed thus:
H
m(H,t+1)= m(H,t)LET)-,

where m(H, t + 1) is the expected number of examples of schema / at time ¢ + 1, fUH) is the
average fitness of strings representing the schema A at time ¢ and f”is the average fitness of
the population.

The probability, p, ,that a particular schema survives simple crossover can be expressed as:

ple—pc-%}?’

since the schema is likely to be disrupted when the crossover point lies within the defining
length (/ = 1).

In order for a schema to survive mutation, all the specified positions must themselves survive.
Mutation is the random alteration of a single position with probability p,. As a single allele
survives with probability (1 — p.), and since each mutation is statistically independent, a
schema survives when each of the o(H) fixed positions within the schema Survives.
Multiplying the survival probability (1 — p.) by itself o(H) times gives the probability of
surviving mutation, (1 — P, For small values of py, (P << 1), this may be approximated
by the expression 1 — o(H)-pm.

Therefore, the expected number of copies a particular schema H receives in the next
generation is given as the number of representatives after reproduction multiplied by the
probability of surviving both crossover and mutation. This is given by the following equation
(ignoring small cross-product terms):

m(H,t+1)=m(H, r)-’%{l ~ P -%(?—O(H)Pm]

From this result, it can be seen that fit, short, low-order schema receive exponentially

increasing trials in subsequent generations. These small ‘building blocks’ contain code
patterns beneficial to the search. Solutions eventually become made up entirely of these

10

building blocks. The crossover and mutation operators favour the fittest blocks until the
strings are composed entirely of fit blocks; the less fit blocks having succumbed to disruption.
The schema theorem is the most widely quoted explanation for the effectiveness of genetic
algorithms.

3.2.2 Genetic Programming

The representation used in an evolutionary system can limit the window by which the system
observes its world. A limitation of the Genetic Algorithm is that a fixed-length string is
generally used to encode a representation of the problem to be solved. Sucha representation
scheme cannot vary dynamically to suit the requirements of the problem at hand.

Genetic Programming is a technique, developed by John Koza [21], to breed computer
programs genetically [22, 28]. Koza’s system uses the computer language LISP as the
medium for the programs it creates and applies the same techniques of genetic algorithms to
create those programs. The process of solving problems is reformulated as a search for a
highly fit individual computer program in a space of possible computer programs.

Instead of identifying the units of crossover as single characters, genetic programming uses
symbolic expressions (S-expressions) written in the LISP syntax. S-expressions are made up
of mathematical functions and inputs appropriate to the problem; they are essentially sub-
routines, which are commonly viewed as tree structures.

The set of possible structures in genetic programming is all the possible programs which can
be composed from the set of Nrfunctions F = {f; f,... fur} and the set of N7 terminals from
T= {a,, a,, ... ayr}. Each particular function in the function set takes a specified number of

arguments z(f;).
The functions in the function set may include:

e arithmetic operations (+, -, x, / ,etc),

e mathematical functions (sine, cosine, exponential, etc),
e Boolean logic functions (AND, OR, NOT etc),

e conditional operators (IF-THEN ELSE etc),

e functions causing iteration (DO-UNTIL etc),

¢ functions causing recursion,

e any other problem-specific functions that may be defined.

Terminals are either variable atoms (possibly representing inputs or other variables of a
system) or constant atoms (such as number constants or Boolean constants).

11

Consider the function set:

F = {AND, OR, NOT}

and the terminal set:

T= {D0, D1}.

As an example, consider the XOR function (see truth table in Table 3.1):

input a input b output
0 0 0
0 1 |
1 0 1
1 1 0

Table 3.1: Truth table for the XOR function

This function returns TRUE if either input a or input b is true but not both. This function can
be expressed by the following LISP S-expression:

(OR (AND (NOT DO) D1) (AND DO (NOT D1))).

Figure 3.9 shows the corresponding tree structure for this expression.

(0R)

(AND) (AND)
@op @) (@ D
& @D

Figure 3.9: XOR function

In genetic programming, the terminal set and function set should be selected as to satisfy the
requirements of closure and sufficiency. Closure is the requirement that each of the functions
in the function set be able to accept, as its arguments, any value and data type that may
possibly be returned by any function or assumed by any terminal. This ensures that the
programs created by the system will compile properly as any combination of functions and
terminals is allowed. The Sufficiency property requires that the set of terminals and the set of
functions be capable of expressing a solution to the problem. The user must know or at least
believe that some composition of the functions and terminals available can yield a solution to
the problem. If this requirement is not fulfilled, the space searched may not contain a
solution to the given problem.

12

To perform crossover in genetic programming, two parent programs are selected from the
population (using the usual fitness-based selection methods). A random point on each parent
is chosen as the crossover point. The crossover fragment of a parent program is the entire
subtree below the crossover point. These crossover fragments are swapped between the
parents to result in two new programs which are the offspring (see figure 3.10).

Parents

Children

Figure 3.10: Crossover in tree structures of genetic programs

Mutation in genetic programming is regarded as a secondary operation. The mutation
operation selects a point in the program (a function or a terminal) and replaces it with a new,

randomly generated subtree.

The genetic programming paradigm is a never-ending process. However, in practice a run of
the paradigm terminates when the termination criterion is satisfied. This criterion will either
be that a specific maximum number of generations have been run or a problemrspecific
success predicate has been satisfied. The success predicate could be that an individual with a

13

100% fitness has been found. For problems where an exact solution is not expected to be
found, some sort of appropriate lower criterion is applied.

Genetic programming is a very powerful paradigm, capable of handling a wide variety of
problems. The system does have limitations however; because programs rely on incremental
improvements in fitness, if there is no way of measuring partial fitness in solving the given
problem, genetic programming cannot be applied.

3.3 Algorithmic Composition

There are two distinct types of creativity [18]: the proverbial bolt out of the blue (inspiration
or genius) and the process of incremental revisions (hard work). As we do not understand
genius, it is impossible to create a model for it. The goal of algorithmic composition,
therefore, is to model the creative process of the composer when applying the ‘hard work’
approach to composition. This type of creativity often involves trying many different
combinations against each other and choosing one over the others.

“A sequence (set) of rules (instructions, operations) for solving (accomplishing) a
[particular] problem (task) [in a finite number of steps] of combining musical parts
(things, elements) into a whole [composition]”

The above is a [re]definition of Algorithmic composition as given by Cope [9]. Algorithmic
composition is the application of rigid, well-defined rules to the process of composing music.
It is often frowned upon by ‘traditional’ composers as it can be used as a means of expanding
one’s musical pallete. However, throughout history, when composing music, many
composers have followed rigid rules; many compositions in classical music could be
considered algorithmic compositions. Indeed, today’s A-level Music syllabus includes a
whole section on the mathematical rules for harmonisation of chorales in the style of J. S.
Bach. Johann Kirnberger is regarded as having been the first author of an algorithmic
composition system after publishing his paper “Der allezeit fertige Polonoison und
Menuettencomponist” (The ever-ready Polonaise and Minuet composer) in 1757 [7]. The
system comprises a fixed number of small musical pieces. These are arranged to form a
longer composition by using a die to determine which one will be used as which section.

With the invention of computers in the twentieth century, the notion of automated
composition became possible. Probably the name best known in the use of computers for
composition is lannis Xenakis [40]. Xenakis used computers to aid in the composition of
scores and for live ensembles, using statistical and stochastic methods. His system,
‘stochastic music program’, would ‘deduce’ a score from a list of note densities and
probabilistic weights supplied by the user, leaving specific decisions to a random-number
generator. His 1962 work for four instruments, Morsima-Amorsima, was composed in this
manner.

14

3.3.1 Models and Techniques used for Algorithmic Composition

In their book A Generative Theory of Tonal Music [24], Lerdahl and Jackendoff apply
linguistics theory to music. Their theories are the based on the ideas of generative-
transformational grammars for linguistics. Generative Linguistic Theory is an attempt to
characterise what a person knows when they know how to speak a language; it is most widely
known through the work of Noam Chomsky [8]. Chomsky argues that linguistic description
on the syntactic level is formulated in terms of constituent analysis (parsing). Lerdahl and
Jackendoff apply these theories to music showing how it can be split in to a set of hierarchical
levels.

The lowest level in the hierarchy is a single note. This note has two fundamental attributes: a
pitch and duration. A small group of notes form a motive (a short musical idea). Motives are
the building blocks of melody. A motive is heard as part of a phrase, a phrase as part of a
phrase-group (or section) and a section as part of a piece (see figure 3.11).

These different levels in the music operate in different temporal scopes.

Piece
- l |
Section Section
| 1 1 ¥ Eanaa Drawresy :
Phrase Phrase
Motive Motive
—L— - S e HER L e HE , e Y nmncy :

Note Note

.
ceeesdeassa gr== B deoeae leicedecas jeresdeseces jea= d e .-
,_L_.I patEe kTR o .] ' X s 4 - 3 : '
. e g . ' 1 '

Pitch Duration

Figure 3.11: A piece of music modelled as a parse tree

Schema theory has also been applied to music. Lerdahl [25] presents a series of analyses
showing the presence of underlying musical schemata in both phrase structures and harmony.

Stochastic algorithms are the most commonly used types of composition algorithm. They
depend on the laws of probability, which makes it impossible to predict the precise outcome
of the process at any point in the future [28]. The outcome of a stochastic process depends on
certain underlying probabilistic distributions. This is a term used to describe how the
probabilities are divided between the possible outcomes.

The simplest probability distribution is the uniform distribution, where the probabilities of all
outcomes are equal (see figure 3.12 (a) overleaf). This can be implemented using a simple
random-number generator.

For many cases in the composition of music, the uniform distribution is inadequate. Better
models are provided by using alternative distributions such as Linear distributions,

15

Exponential distributions, Bell-shaped distributions and U-shaped distributions (see figure
3.12 (b) to (e)).

£ 075 £ o075
F=] <l
a) ,g 05 d) .§ 0.5
T 925 & 025 |—]
0 T T [r T []1 T 0+ T T ey T
1 2 3 4 5 6 1 2 3 4 5 6
Frequency Frequency
1 1
£ 075 £ o7
2 e) 2 s
b) .g 05 E)
< g2s |_| 0,25 |—]
ey =i | [I 0 l l i PSS s |
0 T T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 e
Freguency Frequency
1
0.75
<)

B
H

]

|

]

Frequency

Figure 3.12: Different probability distributions: a) uniform b) line
¢) exponential d) bell-shaped e) U-shaped

Another stochastic process used in algorithmic composition is the Markov Chain. A Markov
chain (or model) is a discrete probability system in which the probability of future events
depends on one or more past events [28]. The number of past events that are considered at
each stage is known as the order of the chain. An Nth-order Markov chain can, in general, be
represented as a state-transition matrix — an N + 1 dimensional probability table. A state
transition matrix for a possible first-order Markov chain is shown in Table 3.2. The state
transition diagram for the same model is shown as a labelled, directed graph in figure 3.12
overleaf.

A B C
A 0.8 0.2 0
B 0.1 0.5 0.4

0 0.5 0.5

Table 3.2: State transition matrix for a first-order Markov chain.

16

0.2 0.4
— ——T T ey
s C(A1___(&) 0s
"--__________-/
0.1 U 0.5
0.5

Figure 3.13: State Transition diagram for Markov model of Table 3.2

3.3.2 Use of Evolutionary Techniques in Algorithmic Composition

Evolutionary systems for algorithmic composition either evolve music generating “musician”
algorithms [3,6,33,38] or evolve the piece itself [17].

John Biles’ system, GenJam [3], is a GA-based model of a novice jazz musicianlearning to
improvise. GenJam creates jazz-like solo improvisations from information relating to the
chord structure of an existing piece of music. The performance of the hypothetical novice
musician is judged by a human mentor and in real time. While judging a solo, if a particular
section is judged to be good, the mentor can encourage the system by giving ‘good’
responses. When the output is less pleasing, this is registered using ‘bad’ responses. The
fitness of a particular section in the music is the number of good responses given in that
period minus the number of bad responses.

Biles emphasises the importance of having a good representation for a GA to function
successfully. GenJam uses a cooperating, two-level (i.e. two temporal-levels see section
3.3.1), position-based binary representation scheme. It has two simultaneously evolving
populations of individuals: one of phrases, one of measures. GenJam improvises a solo by
building a sequence of MIDI notes from the decoded representations of measures' and
phrases. A phrase individual consists of the indices of four measures. A measure encodes a
series of eight events, one for each quaver in the measure. An event can be a new-note, a rest
or a hold. There are 14 new-note events, which are mapped to MIDI pitches through scales
suggested by the chord progression being played. This means that GenJam will not play a
technically ‘wrong’ note in relation to the current chord. However, its choice of note may be
bad in the context in which it is played. During a performance, all the members of both
populations can be used. The phrases to be played are chosen by tournament selection
considering both phrase fitness, and constituent measure fitnesses.

Spector and Alpern’s system [33] evolves ‘constructed artists’ using Genetic Programming
techniques. The genetic programs generated by this system take ‘call’ measure as the input
and produce a ‘response’ measure as the output. Melodies are represented as vectors of
(articulation, note) pairs, 48 per measure, where each articulation is above a threshold if a
new note starts and below the threshold otherwise. Each note is a scaled MIDI note or a 0 for
arest. This allows for all standard durations down to 16" notes” and 32" note-triplets’. The

' Measure is the American musical term for bar.
? 16" is the American musical term for semiquaver.
732" is the American musical term for demisemiquaver.

17

genetic programs are built from eight different functions. These functions are operations that
genetic programs produced by the system can perform on the ‘call’ measure to produce a
‘response’ measure.

To test the fitness of the artist programs, Spector and Alpernuse a three-layer neural network
with 192 inputs; one for each articulation and for each note over a two measure (call +
response) fragment. The networks were trained using extracts from Charlie Parker solos.

Bruce Jacob’s system [17] composes a piece by using GAs as data filters, which filter
acceptable material output by a stochastic music generator (see section 3.3.1). It operates
three GAs at different temporal levels; generating motives, building phrases from these
motives and finally arranging sequences of these motives to form the structure of the piece.
The three GAs are the composer, ear, and arranger modules; these modules are the genetic
agents. The composer produces music, the ear filters out unsatisfactory material and the
arranger imposes an order on what is left. The composer and ear agents are evolved until
they cooperate to produce ‘good’ music (when they reach this point is determined by a human
judge). The full system is then allowed to generate musical material, which can be judgedby
a human operator.

The system designed by Johanson and Poli [19] allows users to evolve short musical
sequences using interactive genetic programming. The system works by using a genetic
programming algorithm, a small set of functions for creating musical sequences, and a user
interface which allows the user to rate individual sequences.

Waschka’s system, GenDash [39], is an evolutionary composition system in which, to avoid
the ‘fitness bottleneck’ (see section 3.3.3), a random selection is applied to a population
consisting of twenty-six bars of music. Waschka emphasises the importance of the initial
population for this system though, regarding the initial input material as themes for the
system to develop in an evolutionary manner. His work “Empty Frames” (1996) uses an
initial population drawn from extracts of Beethoven’s Symphony Number 7: Movement 2.

Thywissen’s GeNotator [36] system takes a different approach. He treats a composition as a
whole made up of interrelated parts that all play a part in the overall structure. A genetic
algorithm is used to manipulate a variety of compositional structures within a hierarchical and
generative grammar-based model of music composition. The grammar developed is claimed
to be powerful enough to describe deep structure and transformational rules. The language
includes musically useful constructs such as scales, keys, rhythms, phrases and larger
structures relating to form. The evolutionary start point for the system is not random. The
user creates a compositional structure, which is used as the genotype, then can interactively
evolve it in to any number of phenotypes.

18

3.3.3 Fitness Functions in Music

The biggest problem in using evolutionary approaches for composition is the fitness test. The
assumption is that the fitness test for most evolutionary algorithms is itself algorithmic. An
algorithm that is capable of judging the quality of music would be the solution but since the
appreciation of music is subjective, this is not an easy algorithm to produce. Many
evolutionary composition systems use a human judge as the fitness test but, as evolutionary
techniques usually function over thousands of generations, this is not the ideal approach.
Biles [5] identifies this problem as the “fitness-bottleneck™; as human evaluation of all the
pieces generated by these systems is extremely time consuming.

Some systems use deterministic fitness functions. Repetition of material is recognised as an
important factor in the determination of musical structure. In many forms of music, including
jazz, there are well-defined rules and forms that can be coded to use a rule-based fitness
function.

One possibility is the encoding of preference rules [24, 35]: a set of rules which state certain
underlying preferences which includes the Strong-beat rule, the Harmonic-variance rule, the
Compatability rule, the Pitch variance rule and the Length rule amongst others.

The ‘Strong-beat’ rule states that we prefer chord spans to begin on the strong beats (beats 1
and 3 in a 4 beat bar). The ‘Harmonic-variance’ rule states that we prefer roots such that
roots of nearby chord spans are close together on the line of fifths (see below).

The line of fifths: .Bb FCGD AEB F# C#...

The ‘Compatibility’ rule states that we prefer roots that result in certain pitch-root
relationships (i.e. the tune fits with the chords). The ‘Pitch variance’ rule states that we prefer
spellings for pitch events so that nearby ones are close together in the line of fifths. The
‘length’ rule states that we prefer structure that aligns strong beats with the onsets of longer
events.

Other approaches have been investigated in making automated fitness functions for music.
Several approaches have used neural networks [5, 19,33]. Neural networks can be useful as
they can learn from human fitness choices. However, they do not model time well and tend
to over-fit the training set [5] and fail to generalise (i.e. they will class pieces they already
know as good and not recognise good new pieces). It is, however, possible that neural
networks could play a useful part in an integrated approach to automatic fitness evaluation.

19

3.4 Standard MIDI files

MIDI stands for Musical Instrument Digital Interface. It is a serial interconnection standard
for electronic musical instruments. It is used for both performance and recording purposes.

The standard defines a keyboard mapping to 127 pitches [30] (see figure 3.14).
T O O
MIDI note numbers

Piano Keyboard 1

Figure 3.14: Full MIDI range shown on a keyboard

A steam of MIDI messages can be stored, along with related timing information, to form a
MIDI sequence. This is the representation of a piece of music stored as a set of commands
such as note-on, note-off, and program-change. The Standard MIDI file [37] is a file
standard designed to provide a way of transferring time-stamped MIDI data between different
programs or different computers.

MIDI files contain one or more MIDI streams, with time information for each event. Other
information such as song, sequence and track structures, tempo and time signature is
supported.

Some numbers in MIDI files are represented in a form called variabledength quantity. These
numbers are represented with 7 bits per byte, most significant bits first. All the bytes except
the last have bit 7 set; the last byte has bit 7 leftclear.

A standard MIDI file is made up of chunks. Each chunk has a 4-character type and a 32-bit
length. Numbers are stored most significant byte first (as the format was originally designed
with Atari and Apple computers which use big-endian Motorola processors). This means a
length of 6 is stored as 00 00 00 06.

MIDI files contain two kinds of chunks: header chunks and track chunks. A header chunk
provides a small amount of information pertaining to the file as a whole. A track chunk
contains a sequential stream of MIDI data which may contain information for up to 16 MIDI
channels.

A MIDI file always starts with a header chunk, which is followed by one or more track
chunks. (see figure 3.15)

[e [r] Trackdata [1rk| Track data |rek| Track data

File Header Track Header

Figure 3.15: MIDI file structure

20

A track chunk is made up of a track chunk header and a series of track events. Each event
has a delta-time before it. A delta-time is the amount of time between the previous event and
the next event. Events are either MIDI messages (including system exclusive) or meta-
events.

Meta-events are non-MIDI information useful to this format or to sequencers. They include
time signature, key signature tempo events and text events such as lyrics.

21

4 A system for composing Jazz by evolution

This section describes the system that will be used to compose pieces of jazz using
evolutionary computing techniques. It includes a brief overview of the entire system, a
detailed look at the abstraction and genetic representation of pieces and an explanation of the
language defined for the genetic program. The section concludes with an example of how a
real piece of music might appear in this representation.

4.1 System Overview

The system consists of the population of pieces, the fitness test and three functional blocks:
the Generator, the Breeder and the Renderer. Figure 4.1 shows the relationships between the

parts of the system.
l Candidates to be bred

Breeder
New Generation >
Start Generation > Population
. '
L] 1
¢ : l ‘
\ 4 ' '
Select Best :
Candidates i
Renderer Generator '
,
&,
,
,
*,
MIDI File ot

Figure 4.1: System Overview

The population is the set of pieces that make up the current generation g(i). The Generator
produces a set of pieces which forms the starting generation 2(0). It uses several different
stochastic techniques (outlined in section 5.3) to generate new pieces.

22

The Breeder is the part of the system that breeds pieces together. The parent candidates from
the current generation g(i) are bred together to create a new set of pieces which forms the
next generation g(i+1).

The Renderer converts pieces from their genetic representations to MIDI files. The MIDI
files can be scored out and played using a MIDI sequencer program (see Section 5.5). This
makes it possible to apply the fitness criterion and allocate a fitness value to each piece.
These fitness values are fed back in to the system to determine which candidates from the
current population will be bred on to the next generation.

4.2 An Abstract Model of a Jazz Piece

Jazz standards (see section 3.1) are usually written out as a melody line (the head) and a
chord chart that describes the harmonic structure of the piece. These two sets of information
are normally all that is needed to describe a piece fully enough for a performer or a group to
give a convincing rendition of it. As the purpose of the composition system is to create new
pieces of Jazz music, it should produce pieces with two parts: the melody line and the chord
progression.

As discussed in section 3.3, a successful composition system must function at several
different temporal levels. An evolutionary composition system should therefore be capable
of evolution at each of these levels. A model of a piece is needed that caters for the separate
levels in such a way as to allow each one to evolve.

Motives are the underlying building blocks of the melody part. The better a piece’s motives
are, the better the melody line will be. Thus, the model must allow evolution of the motivic
material that the piece is based on. Phrases are made up of groups of motives and variations
of those motives. Evolution of the phrase structure therefore must also be allowed in the
system.

The harmonic structure of a piece is built up of short chord progressions such as cadences and
temporary modulations. The model must allow these progressions to evolve. Harmonic
phrases are built from groups of these progression patterns and are generally longer than
melodic phrases. Hence, as with melody, the system must allow evolution of the harmonic
phrase structure.

The higher temporal levels in the piece are made up of groups of phrases. Since a group of
phrases can be viewed as a large, subdivided group of motives, each of the higher levels is
modelled by the evolving phrase structure (see figure 4.2 overleaf).

23

A
Piece-Level

=

g

= Seclion-Level

= ———

o

]

= Phrase-Level B
i)
] Motive-Level
& - = i
=
B .
2 —*
E = - - B - ime
@ t© =

F Cadence/Functional-Level

>

g — = -

= Section-Level

@

o =5

Piece-Level
Y

Figure 4.2: Stylised model for different temporal levels in composition

Using this model, the evolutionary system needs to have a genetic representation capable of
evolving two independent musical models simultaneously. That is to say the motives and
chord progressions are one type of model and the other type is phrase structure. A motive
can not be bred with a phrase nor vice versa; the two are independent but each one needs the
other to have any meaning. As with the notion of evolutionary algorithms in general, the
solution to this problem is inspired by nature:

All living cells have their own DNA. Cells contain organelles: the units that perform cell
functions. The nucleus is the largest cell organelle; it contains the main part of the cell DNA.
Some other types of organelles contain their own DNA, which is separate from that of the
nucleus. Figure 4.3 shows a typical animal cell containing a nucleus and several
Mitochondria (a type of organelle).

Mitochondna Nucleolus

Chromatin - Nucious
Fine Threads

of DNA

Figure 4.3: A typical animal cell

Mitochondria contain their own circular DNA molecule. When cells breed, the crossover of
Mitochondria DNA occurs separately from that of the main cell DNA [13, 20]. The two
exhibit a symbiosis that resembles the relationship between the models for motive and phrase

24

evolution. A system using two separate evolutionary algorithms running in parallel can
therefore be used to represent the model. This representation is presented in section 4.3.

4.3 Genetic Representation of Pieces

A Genetic Algorithm is used to evolve motive and harmony material. Motive material is
represented as a sequence of pitches and a sequence of rhythm patterns. Harmonic material is
represented as a series of chords and a sequence of rhythm of patterns. These representations
form the ‘chromosomes’ of the GA and contain the melodic and harmonic information for the
whole piece. The GA refines melodic and harmonic material through iterations of the
system. A good section of one of the chromosomes, a nice sequence of intervals for example,
stands a high chance of survival according to the schema theory (see section 3.2.1).

A Genetic Program is used to evolve the phrase structure of the piece. The Genetic Program
consists of a string of ‘operators’ as opposed to the tree structure more commonly used in
Genetic Programming [21]. The operators determine from which parts of the GA
chromosomes to take information. Other operators handle variation of motives and chord
progressions such as inversion and transposition (see Section 4.4).

The GP string is analogous to the DNA in the cell nucleus and the GA chromosomes are
analogous to the DNA of the Mitochondria (from the example in the Section 4.1). The GA
chromosomes continue the analogy further in that they are actually circular arrays that hold
the motive, harmony and rhythm information (Mitochondria DNA is circular). This ensures
that a motive will wrap round to the start if it extends past the end of the array. Figure 4.4
(overleaf) shows the structure of the GA chromosomes for motive material, harmonic
progression material and rhythm material.

The chromosome for melody information is a sequence of note pitch-values. The
chromosome for harmony is a sequence of chords. The chromosomes for rhythm are
sequences of rhythm patterns. The rhythm chromosomes for melody and harmony are
identical to each other.

25

Melody-Pitches
Chromosome

% E

% =~‘:
Harmonic-Progression
Chromosome

Harmonic-Rhythms or N\ \ %
Melody-Rhythms . //’
Chromosome i

Figure 4.4: Structure of GA chromosomes.

26

The Genetic Program is stored as a comma-delimited string of characters and numbers. These
characters are the functional blocks and operators of the language (see Section 4.4) and the
numbers are parameters of those blocks and operators. Figure 4.5 shows how the different
parts of the piece representation relate to one another.

Genetic Representation of Piece

; 1 _ —— N, . .
g Melody-Pitches Harmonic-Progression
] j Chromosome % _EChromosome

%, T F ¢W

7=, Melody-Rhythms #™=,_ Harmonic-Rhythms

7 % Chromosome é Chromosome
% J h ég

LN S

(OO O HllH"lUIHH‘H«LLiI\i[l,LI[HHI!IHHIHHHJJJ--»

\\

Genetic Program String .

Motive | Harmony
Block | Block

Figure 4.5: The relationships between different parts of the representation

To complete the piece, the representation must also store initial values for transpose, dynamic
and tempo (see Section 4.4). These are stored separately from the genetic material of the GA
and GP.

4.4 A Music Language for Genetic Programming

The language for genetic programming written for this composition system consists of two
functional types: Harmony and Motive, and five operators: Transpose, Retrograde, Invert,
Dynamic and Speed. Motive and Harmony blocks are the units from which the melody line
and chord part are built respectively. The five operators defined in the language perform
operations on these blocks.

The Harmony block type, H, associates a set of rhythms from the harmonic-rhythm
chromosome with a short sequence of chords from the harmonic-progression chromosome to
form a short section of the chord part. The parameters of the harmony operator areduration,
rhythm and progression. The duration of a harmony block is its length in semiquaver beats,

27

rhythm is the index of the start of the rhythm sequence on the harmonic-rhythm chromosome
and progression is the index of the start of the chord progression on the harmonic-progression

chromosome (see figure 4.6).

Harmonic-Rhythms Chromosome Harmonic-Progression Chromosome
— 3
R D J BbM7 |Am7 | C7 |Gmé
.20 21 22 23.. T.33 34 35 36 ..

GPSting ...,M,16,21,35

Duration

Figure 4.6: Harmony Block

The Motive block type, M, associates a set of rhythms from the melody-rhythms chromosome
and a sequence of pitches from the melody-pitches chromosome to form a short section of the
melody part. The parameters of the motive operator are duration, rhythm and pitch. The
duration of a motive block is its length in semiquaver beats, rhythmis the index of the start of
the rhythm sequence on the melody-rhythms chromosome and pitch is the index of the start
of the sequence of pitches on the melody-pitches chromosome (see figure 4.7).

_ Melody-Rhythms Chromosome Melody-Pitches Chromosome

3 3 3

WWWJ\ B5 | A5 |c#s | G4

: .10 11 12 13 -
[

GP String ”_,M,4,53,11 guae

Duration

.53 54 55 56.

Figure 4.7: Motive Block

28

The Transpose operator, T, causes a section of the melody part or chord part to be transposed.
It has a single parameter, amount, which is the number of semitones by which to transpose
the section. The first block after a transpose command determines which part will be
affected. If a transpose appears before a motive block, the pitches of that block and the
following motive blocks will be transposed by that value. Likewise, if a transpose appears
before a harmony block, its chord roots and subsequent harmony blocks will be transposed.

The Retrograde operator, R, causes the order of pitches or chords in the first block after itto
be reversed (see figure 4.8).

Original pitch sequence Original sequence in Retrograde
A fa)
\;3) EQJE;

Figure 4.8: Retrograde

The Invert operator, I, causes the pitches of the first following motive block to be inverted
around the first note of that block (see figure 4.9).

Qriginal pitch sequence Original sequence inverted around first note
A Y
! : o & =
L5 E '5 I g i o

. ,

Figure 4.9: Inversion

The Dynamic operator, D, sets the dynamic of a section of the piece. As with the transpose
operator, the part it affects is determined by which type of block occurs first after the
dynamic. It has one parameter, marking, which is a numeric value that sets the velocity (how
loud they are played) of notes in the melody or chord part.

The Speed operator, S, sets a new tempo value in the piece (S for speed has been used instead
of T for tempo to avoid clashing with the transpose operator). It has one parameter, fempo,
which is the value of the new tempo in crotchet beats per minute.

Harmony blocks will, in general, be longer than motive blocks as the harmonic progression of
a piece is slower than the variation in the melody line. To give the melody and chord parts a
basic level of coherence, the two parts are synchronised at the start of each harmony block.
This ensures that two blocks close together in the program string will occur close together (in
time) in the resulting piece. One harmony block may have several motive blocks associated
with it but not vice versa.

29

As an example, consider the string:
H,32,6,43,M,12,24,53,I,M,l6,32,3,T,5,H,24,40,53. o

The blocks and operators in this string are:

H(32,6,43) Harmony block,
duration = 32 semiquaver beats
harmonic-rhythm index = 6
harmonic-progression index = 43

M(12,24,53) Motive block

duration = 12 semiquaver beats
melodic-rhythm index = 24
melodic-pitches index = 53

[Invert operator

M(16,32,3) Motive block - inverted
duration = 16 semiquaver beats
melodic-rhythm index = 32
melodic-pitches index = 3

T(5) Transpose operator, amount = 5 semitones

H(24,40,53) Harmony block, - chord roots transposed up 5 semitones
duration = 24 semiquaver beats
harmonic-rhythm index = 40
harmonic-progression index = 53

Figure 4.10 shows the structure of the music resulting from the example string in relation to
bars of 4/4 time. The two motive blocks in the string are associated with the first harmony
block.

Bar 1 Bar 2 Bar 3...
H 1 :
lMotive 1 - 12 semiquaver beaisJ [Motive 2 - 16 semiquaver beats J Rest 5 Motive 3...
Harmony 1 - 32 semiquaver beats | Harmony 2...

Figure 4.10: Example structure of piece

30

4.5 Example Piece ‘Daisy’

An existing piece of music is analysed in this section so that a genetic representation of it can
be ‘backwards engineered’ from the analysis. The piece chosen for analysis was is nursery
rhyme “Daisy” (a small homage to HAL9000, the computer from Arthur C Clarke’s 2001: A
space Odyssey).

Figure 4.11 shows a transcription of the piece. The top stave is the melody line and the
second stave is the chord part showing the chord names and the rhythms of the chord
changes. The harmony of the piece has been deliberately ‘jazzified’ to demonstrate the
system’s representation of jazz chords.

MR1 MP1 MR2 MP3 MR7 MP7 MR1 MP2 MR2 MP6 MR7 MP13
[| T 1M 1 1 |
—3—r—3—3 3

HR1 HP1 HR2 HP2 HRS5 HP3

MR2 MP11 MR6 MP10 MR3 MP9 MRS MP8
I 11 1T 1T

—8— —38— r—38T —3d—

5

remd— —83— —3— 38—
%. ——— B e e e - .
L 1 1 1 11 l" II i\‘ Il‘ 1 : ;n ;|I
5 : == =5 B
3 —3— —3—
- - - 1 - Y PO |
r A T LA '
C7TE CM6 CE F FA BbMS BbM7/A F
L S e
HR3 HP4 HR3 HP5
MR3 MP4 MR4 MP5 MR9 MP12 MR2 MP14 MR8 MP15
1 1 1 T 1]

[

7

- -3-— =i
B =

T

 —

Wtj‘ 7
- -

{18

il

) —3 =
. - -5 Py & 3 s [s = o _l.l..
J [I 4 T I I
BbM7 FMS/A BbMT FM7/A FMT7/C c7 F M9
L | i |
HR4 HP6 HRS HP7 HR& HP8

Figure 4.11: Transcription of ‘Daisy’

21

The melody and harmony parts have been split up in to small sections that will form the
motive and harmony blocks of the GP. Each motive has a rhythm pattern and note sequence
associated with it.

Several motives in the melody line share the same rhythm patterns. Bar 2, for example, starts
with triplet quavers followed by a swung quaver-crotchet pair. The same pattern, MR2
(melody rhythm pattern-2) appears at the start of bars 4, 5 and 8. A pattern used more than
once only needs to be stored once on the melody-rhythms chromosome. Rhythm patterns can
overlap on the chromosome, as the patterns do not affect each other. Figure 4.12 shows the
full rhythm sequence for the melody-rhythms chromosome and where each rhythm pattern
appears on it.

MR1 MR3 MR2 MR6 MR8 MR5
[1 [| | T | |]
—3/ 3 —8— 347 66— 37 8
0 1 2 3 4 5 6 g ~ 9 10 11'D
L | Il | 8
MR7 MR9 MR4

Figure 4.12: melody rhythms

Each motive block uses a pitch sequence that appears somewhere in the melody-pitches
chromosome. These sequences can overlap on the chromosome. Most of the motive block
pitch sequences are mapped directly on to the chromosome. Figure 4.13 shows the full pitch
sequence for the melody-pitches chromosome, where each pattern occurs and which
operators have been applied to them.

MP5
MP1 MP3 MP8 R
| 1] |]
) o L4
Y 0 Tt 2 3 ; & 6 7 la 9:"“12 13 14 15 16 3;:20
MP2 MP4 MP6
MP11 T(8) MP15 MP7
i —] —

G'T
124 ._‘.+£_._‘___
%ﬁ.."#_‘ P
28

21 22 23 24 v # q"3334 35 36 37 38 39 40 41 ® XX
25 28 27 29 30 31 32 42 43 44

! Il | i | L J | |
MP9 Rl MP10 T(5) MP12 MP13 MP14

Figure 4.13: melody-pitches

32

MP9 (melody pitch sequence 9) is reversed on the pitches chromosome. This allows for the
demonstration of the Retrograde operator in the GP. Likewise, MP10 and MPI11 are
transposed (by 5 and 8 semitones respectively) to demonstrate the Transpose operator. Notes
to be played as rests (pitch numbers 18, 36, 43 and 44) are displayed as crosses.

The harmony line has been analysed in the same fashion. Figure 4.14 shows the rhythm
sequence for the harmonic-rhythms chromosome. Note that HRS occurs twice (bars 4 and 8),
as does HR3 (bars 5 and 6).

HR2 HR3 HR4 HR6
8
4 5 6 7 9 10 11 12
HR1
HR5

Figure 4.14: harmonic rhythms

Each Harmony block uses a chord progression from the harmonic-progression chromosome.
Figure 4.15 shows how the chords are arranged on the chromosome (A chord to beplayed as
a rest is shown as an X). To demonstrate how the GP operators affect harmony blocks, HP4
is transposed by three semitones and HP6 is in reverse order.

HP1 HP2 HP3 HP4 T(3)
r 1 11 10 1
FM7 FM7/A BbM6 BbM6/G F F/A C7 CI/E F FIA Gmé Gm7/F C A7/C# Amé6 A/C# D
o] 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16
HP5 HP6 R HP7
| iy N |
F/A BbM6 BbMZA F F4DIM7/A X FM7A BbM7 Fmaj9/A BbM7 FM7/C C7 F Fmaj9
17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 4.15: harmonic-progression

With the four GA chromosomes defined, it is now possible to write the Genetic Program
string that describes the piece. The first block is a Harmony block, two bars long, which uses
the rhythm sequence HR1 and the progression sequence HP1. Two bars of 4/4 time is 32
semiquaver beats long. HRI starts at point 0 on the harmonic-rhythm chromosome and HP1
starts at point 0 on the harmonic-progression chromosome. The first command in the string is
therefore:

H,32,0,0

Three motive blocks occur in the duration of the first harmony block. The first of these lasts
for a bar (16 semiquaver beats), using MR1 and MP1 (with start points 0 on the melody-
rhythms and 1 on the melody-pitches chromosomes respectively. The length of the second

33

motive block is 8 semiquavers and the third is 4. The second motive block uses MR2
(melody-rhythms index 6) and MP3 (melody-pitches index 5) and the third uses MR7 and
MP7 (indexes 3 and 42 respectively). Therefore, GP string is now:

H,32,0,0,M,16,0,1,M,8,6,5,M,4,3,42

The rest of the string is coded in the same way as outlined above. The first motive block in
bar 5 is transposed by 8 semitones therefore the string at that point is:

....T,8,M,8,6,27,...
The first motive block in bar 6 is reversed. The code at that point in the string is:
....R,M,8,4,21,...

This hand-coded representation of ‘Daisy’ was used to test the Renderer (see Section 5.5). A
score of the MIDI file produced (daisy.mid), along with the full code for the piece and the full
listing of each GA chromosome array (in the output text file daisy.txt) is shown in Appendix
Section 11.3.

34

5 System Implementation

This section describes the system implemented to generate and breed pieces of music.
The system has been split in to separate parts with defined roles. Each part will be dealt

with in turn.
The important algorithms and some short code extracts are discussed in this section. The
full program code can be found on the CD.

Main Application

Generator Renderer Breeder pop_a { pop_b]

midi file writer

Figure 5.1: Object Model of System

Figure 5.1 shows the overall structure of the system. The Generator, Breeder and
Renderer and Midi File Writer are instances of the classes described in sections 5.2, 5.3,
5.4 and 5.5 respectively. pop_a and pop_b are arrays of pieces. These arrays hold the
current and new populations at any one time. On each iteration g(i) of the system, it
replaces the old generation g(i-1) with the new generation g(i+1) (see figure 5.2).

Generator

g(0)
Current = pop_a
New = pop_b
a(1)
Cument = pop_b
New = pop_a

Current = pop_a)
New = pop_b
9(3)
Current = pop_b

New = pop_a

Figure 5.2: Diagram of swapping generations

35

Swapping generations between the arrays is achieved by using three pointers: current,
new and spare (see figure 5.s on previous page). After each cycle, the functions of the
arrays are swapped thus:

spare = current
current = new

new = spare

On initialisation, current points to pop_a and new points at pop_b. The Generator
populates the current generation array to form the first generation g(0). The members of
g(0) are then rendered as MIDI files, assessed and allocated a fitness value. These fitness
values are fed back in to the system and used to select the parent candidates for the next
generation g(1) (see figure 5.2). The render-test-breed cycle is carried on for each
subsequent iteration.

Tournament selection [22] has been used to choose the parents of the next generation.
Two individuals are selected randomly from the population (see figure 5.3). The pair are
compared and the fittest of the two goes on to be the first parent P1. Another pair of
individuals is then chosen randomly from the population (P1 is no longer available for
this selection) and the fittest of these two becomes parent P2.

e~ L I Ve T
rsill) “"*; — —_—
~—= Current Population ——=—_ ... » — _ oz
Pl — T = Current Population - P1 ——
G o P ™~ Z _ =
S , —

random piece ¢ random piece d

fittestaorb ?

N\

Parent P1 | | Parent P2

a4 » |
Breeding

Figure 5.3: Tournament selection

36

5.1 Notes, Chords and Rhythm Figures

The GA chromosomes of a piece are arrays of data structures. They use three structure
types: NOTE, CHORD and FIGURE (These are defined in piece.h on the CD).

5.1.1 Note Structure

typedef struct
{

int wvalue;
bool rest;
}NOTE;

The NOTE structure (above) holds two pieces of information: value and rest. Value
is the MIDI pitch value of the note from 0 to 127 (see Section 3.4). Rest is a Boolean
variable that determines whether the NOTE will be rendered as a pitched note or as a rest.

5.1.2 Chord Structure

typedef struct
{

int type;

int extension;
int root;

int inversion;
bool rest;

} CHORD;

The CHORD structure (above) holds five pieces of information: type, extension, root,
inversion and rest. Type is the chord type (for example M, M7, m6). The system
currently understands thirteen basic chord types mapped to the numbers 0 to 12.
Extension is the type of extension added to the chord (for example 9, dim11). The system
currently understands seven extension types (including 0 — no extension) mapped to the
numbers 0 to 6. Root is the MIDI pitch value of the root note of the chord. Inversion is
the value which determines which note of the chord to be played as the bass note.

Rest is a Boolean variable that determines whether the CHORD will be rendered as a chord
or as a rest.

37

5.1.3 Figure Structure

typedef struct

{
int pattern;
int duration;

}FIGURE;

The FIGURE structure (above) defines a rhythm pattern to be played and is used for both
melody and rhythm. It holds two pieces of information: pattern and duration. Pattern is
the type of rhythm to be played (e.g. a single note, triplet or a swung pair etc). The
system currently understands eleven patterns, mapped to values 0 to 11 (see table 5.1).
Duration is number of semiquaver beats that a pattern is played over. For example, a
triplet pattern with a duration of four semiquavers (one crotchet) would be played as
triplet quavers. However, the same triplet pattern with a duration of twelve semiquavers
(a dotted minim duration) would be played as three crotchets (see figure 5.4).

Pattern x Duration = Rhythmic Figure
3 3
Ju o)
Triplet % Crotchet = Triplet Quavers
3
JJ)) JJ))
Triplet % Dotted Minim = Three Crotchets

Figure 5.4: Rhythm Figure example

0 Dl 6

J
ﬁ 1 J] 7
5| e | |

ippl 3 J1111] 9

JJJ 4 I 10

Table 5.1: Rhythm Patterns

38

5.2 Formal Piece Structure
Each piece is an instance of the gp_piece class (see piece.h and piece.cpp on the CD).

The gp_piece class contains the GA chromosome data, the Genetic Program, the piece
name and the initial values which, together, describe a piece entirely. The class also
contains the names of its parent pieces for tracing lines of inheritance back through
generations.

The GA information is stored in four arrays (see below). An array of NOTEs,
melody pitches, stores the pitches of the melody line and an array of FIGUREs,
melody rhythms, stores the rhythmic patterns for the melody line. An array of
CHORDs, harmonic progression, stores the chord progressions for the harmony
part and another array of FIGUREs, harmonic_rhythms, stores the rhythmic patterns
for the harmony part.

NOTE melody pitches[100]; array of notes

FIGURE melody rhythms[100]; array of rhythm figures
CHORD harmonic_progression[100]; array of chords
FIGURE harmonic rhythms([100]; array of rhythm figures

The Genetic Program string is stored in a character array: gp_string (see below). Itis
treated as a null-terminated string by the system.

char gp_string([1000]; character array to hold gp string

The initial values of tempo (in crotchet beats per minute), transpose and dynamic are held
as integers.

int tempo; initial tempo (bpm)
int transpose; initial value of transpose
int dynamic; initial value of dvnamic

The name of the piece is stored as a null terminated string, filename. parent_a and
parent_b are the filenames of the piece’s parents.

char filename[30]; filename (null terminated string)
char parent_a[30]; parent Pl name
char parent b[30]; parent P2 name

The gp_piece class has one function: save piece data(). This function outputs the
contents of the piece to a formatted text file (for an example an output text file, see
Daisy.txt in Appendix 11.3).

39

5.3 Generator

The gp_generator class generates the values for the pieces that make up generation
g(0) (see generator.h and generator.cpp on the CD). The gp_generator class has a very
simple interface; there are two functions: set parameters and generate
(see below).

set_parameters(int length) ;
generate (gp_piece *new_piece, int number) ;

set_parameters simply sets the approximate length of piece (in beats) to be
generated. The generate function chooses values for the GA chromosomes and GP
string of the piece passed to it. Number sets the number X of the piece
(ie. filename = g0xX). The values for the GA and GP are generated using several
different stochastic methods.

The first method employed is a simple random-number generator. This is used to
generate values such as dynamic and transpose giving a simple rectangular distribution
from 0 to an upper limit. Values such as melody pitches and chord roots are generated
with the random number generator then added to an offset value.

The second method employed is to take a random value from a discrete probability
distribution. This is implemented with an array of values that forms the distribution and a
random number generator to choose which value to take. The example below shows a
distribution that is skewed to favour lower numbers (see figure 5.5 for distribution that is
formed). Values for rests in the melody and harmony parts are determined this way.

distribution(12] = {1,1,1,1,2,2,2,3,3,4,5,6};

value = distribution([random(11l)]:

0.3
Zz]
=
8 015 -
<]
a]
0 T T T T T T
1 2 3 4 5 6
Frequency

Figure 5.5: Distribution Example

40

The final method employed is Markov models (see section 3.3.1). A third-order Markov
chain is used to generate the Genetic Program string. The state transitions for the GP
string Markov model is shown in figure 5.6 (see overleaf) as a labelled, directed graph.
The graph is so heavily interconnected that a “dummy” state Other has been added so that
it may be split up for clarity.

The Markov model is implemented using a probability distribution array as before. The
difference is that this array is altered at run time depending on which state is occupied.
The states which alter the array are H and M (Harmony and Melody respectively). When
a the H state is reached it alters the next-state probabilities of H and M to favour M.
When the M state is reached for a third time after the last H state, it alters the nextstate
probabilities of H and M to favour H (see pseudo code below).

distribution([13] = {0,0,0,0,1,1,1,1,2,3,4,5,6}; start distribution
motives = 3 number of motive blocks since last harmony block initialised to 3
begin

switch(distribution[random(12))
{
case 0: Harmony
motives=0 reset motives
distribution[1l through 5]=1 compared to harmony block
break

case 1: Motive
motives++ increment motives
if (motives>=3) when motives equals three...

{

distribution[l through 5]=0 ...Alter probability to favour H
motives=0 reset motives

}

break

case 3 to 6: Other operators — these do not alter the distribution
}

loop to beginning

41

Figure 5.6: Third-Order Markov Model a) shows main graph, b) shows ‘Other’ for
orders 1 & 2 ¢) shows ‘Other’ for order 3.

5.4 Breeder

The gp_breeder class takes two parent pieces and breeds them together to produce two
children (See breeder.h and breeder.cpp on the CD). It performs crossover on the GA
chromosomes and on the GP string. The breeder does not currently implement mutation.

The breeder randomly allocates one parent’s initial values to one child and the other
parent’s values to the other child. This is implemented in code using the ternary operator
[1, 31], which has been used extensively in the breeder class (see pseudo code below).

i = random(1); pickvaluefori (0orl)
set initial values:

i ? parent a->initial v : parent_b->

child_a—>initial_v
initial_v;

child b->initial v i ? parent b->initial v : parent a-

>initial wv;

The breeding of the GA chromosome uses the ternary operator again. It uses a crossover
flag and a dummy array that is the same length as the chromosome that stores the
crossover points. The crossover points are marked in the crossover array at random
positions. The number of crossover points is set using theset_rates function. When
a crossover point is reached in the array, the crossover flag is toggled. The current
element of a child will be set to equal the current element of parent 1 or parent 2
depending on the value of the crossover flag (see figure 5.7).

X1 X2
Cross_pts [0,0... s 150z w010 00
P1 : :
P2 ; E
x_over=0 . x_over =1 . x_over=0
C1 : i

C2

Figure 5.7: GA crossover

43

In the case of Harmony and Motive blocks, a function is called which creates the required
block type (these functions are discussed later in this section). When the current block or
operator has been decoded the next one in the string is found and the cycle continues until
the null terminator the end of the string is found.

5.56.2 Decoding the GA chromosomes

When a harmony or motive block operator is found in the GP string, a function is called
which handles the decoding of the GA chromosomes and sends the relevant data to the
file-writer object.

The rhythm information for both types of block is decoded using the function
get rhythms. This function decodes FIGUREs from a rhythm chromosome and puts the
decoded absolute note-lengths into an array. The algorithm works through the
chromosome until the accumulated value of the note-lengths found is greater than or
equal to the number of beats required (see figure 5.9).

Start decoding at
Rhythm pointer

sl IR IR RN)

Duration
(semi quavers) 8 2 4 6

Rhythm Chromosome

Array of note lengths J J ﬁ m Jﬁ

5 crotchet beats - 8 separate notes

Figure 5.9: Decoding Rhythms

47

The Motive function calls the get_rhythms function to decode the required part of the
melody_rhythms chromosome. The number of notes needed from the melody pitches
chromosome is the number of note-lengths returned by get rhythms. The NOTEs are
taken from the melody_pitches chromosome one by one and passed to the file writer
object along with the values for transpose and dynamic (see fig 5.10 a) using the
write_note function (see Section 5.6). If Retrograde is true then the notes are taken from
the same area on the melody_pitches chromosome but in reverse order (figure 5.10 b).
The Retrograde operator does not affect the rhythm pattern.

Array of note lengths melody_pitches Chromosome
Melody pointer
l Retrograde = 0 N
....... | ~ .
4
J J ob ﬁ A5 C#5 G4 D5
........ hd S
. I
Retrograde = 1
fa)
J \,'

a) Retrograde = 0]

Y
b) Retrograde = 1 -

L%)

)

<IN

Figure 5.10: Decoding Melody GA a) Normal, b) Retrograde

If Invert (see Section 4.3) is true, the notes are all inverted around the first note of the
motive (see psuedo code below).

1f (invert) note.value = 2*first note - note.value;

The decoding of the Harmony GA parts is performed in the same way as the Melody GA
decoding described above. The Harmony block function calls the synchronize time
function of the file writer (explained in Section 5.6) then decodes the GA information.
The chords are taken from the harmonic_progression chromosome and passed to the file
writer using the write_chord function (chord decoding is performed by the file writer—
See Section 5.6).

48

5.6 Midi File Writer

The midi_file writer class (see fwriter.h and fwriter.cpp on CD) creates a simple interface
for converting the genetic representation of a piece to a standard MIDI file (see Section
3.4). The class has five public functions: save_file, write_note,write_ chord,
synchronize timeandwrite_tempo.

The file created is a type 1 MIDI file [37] with four tracks: Melody, Chords, Bass Line
and a dummy track which holds initialisation information and tempo changes. The tracks
in a type 1 MIDI file are stored in sequence in the file. Because of this, the track data is
stored in large character arrays (one array for each track) so that the tracks may be written
to independent of each other. When the piece has been fully rendered, the save_file
function is called. This function builds the MIDI file by appending the relevant header
data then outputting each array to the file (see figure 5.11).

File Writer

Dummy Track Amray

l Chord Track Array

|

| Bass Track Amay

[[r] DummyTrck [1ac] 2 Chord Track [rc| BassTrack

. T, T MIDI File as laid out on the disk

Figure 5.11: Relationship between arrays and Midi File

The write_note function is used write a MIDI note event to the melody track. If the note
passed is a rest, no note event is added. The lengths of consecutive rests are accumulated
and the total rest time is inserted as a delta-time at the start of the next note to be played.
If the note passed to it is not a rest, the function inserts a delta-time equal to the time since
the end of the last note (zero if the previous note was not a rest) and a note-on event. It
then inserts a delta-time for the note-length and a note-on event with velocity zero (a
note-on event with velocity zero is equivalent to a note-off event). The complete MIDI
message that is added to the melody array takes the form:

XX-XX 90 NN VV XX-XX 90 NN 00

49

where:

XX-X¥ variable length delta-time = time since end of last note
90 note-on header on chan 1

NN note value

LAY velocity value

XX-XX variable length delta-time = note length

90 note-on chan 1

NN note value

00 velocity 0 to end note

The write_chord function decodes a CHORD structure then writes a chord and a lyric
event, containing the chord name, to the chords track and a bass note to the bass track. It
handles rests in the same way as the write note function described above.

An array, chord notes, is used to store all the notes in a chord. The chord-type is
determined and the note values that make up that chord are added to the chord_notes
array. The chord in the pseudo code example below is a Major 6™ chord. This chord is
made up of the root, the major 3" (four semitones above the root), the 5™ (seven
semitones above the root) and the major 6™ (9 semitones above the root). The variable,
notes, records how many notes there are in the chord notes array. The chord extension is
found in the same way; in the example the major 9™ (14 semitone above the root) is added
to the chord.

switch (chord->type)
{

.case Mé
chord notes[0] = root + 0; notesinM6: Ist, 3rd, 5th and
6th
chord notes[l] = root + 4;
chord notes[2] = root + 7;
chord notes[3] = root + 9;
notes = 4; there are now 4 notes in array
name_string += “M6” add type to name-string
switch (chord->extension) Sfind chord extension
{
case 9th
chord notes[4] = root + 14; 9th
notes++; increment notes
name string += “(9)"” add “(9)" to name-
string

other extensions

}

other chords...

50

When the notes of the chord have been added to the chord_notes array, the inversion
value of the CHORD is used to determine which note to play in the bass part. If the value
of inversion is less than or equal to the number of notes in chord_notes, the note in that
element of the array is played as the bass note; if it is not, the root note is used. The bass
note is played in the octave below the chord voicing.

The note-on messages for each note in the chord are added to the chord-track array along
with a lyric event containing the chord name. The chord’s duration is then added as a
variable length delta-time followed by note-off messages for each note in the chord. The
bass note-on, duration and note-off messages are then added to the bass-track array.

The synchronize_time function synchronises the melody track to the harmony parts (the
bass and chord tracks are synchronised all the time as they are always written together).
The function works by determining which track lags the other and adding a rest value
equal to the time difference to the lagging track (see figure 5.12).

Synchlronise Synchlronise Synch'ronise
..... ' I I sewe s
Melody."l"r_a_lck éggted
| | |
Chords Track Rost
e | ' s
Pa— ' I '
Added
Bass Track e |
time

Figure 5.12: Synchronising tracks

The write_tempo function writes a new tempo-change event to a fourth, dummy track.
The function inserts a delta-time in to the dummy track that is equal to the time between
the last tempo change and the last note played in the melody track. The tempo-change
event is then added to the track.

5.7 Fitness Test

The fitness test currently implemented in the system is that of a human judge marking
pieces to a set of criteria and giving each piece a final fitness grade. Figure 5.13 shows
the mark sheet that is used for a test.

Tonal Rhythmic Phrase Personal Total
Coherence Coherence Structure Opinion

IEY mark out | mark out | mark out mark out | Total out
of 10 of 10 of 10 of 10 of 40

91?2 | / '\H____/——-—-——-_\

v : v

Figure 5.13: Mark sheet

51

The fitness test comprises of four criteria: Tonal Coherence, Rhythmic Coherence, Phrase
Structure and Personal Opinion.

Tonal Coherence is a measure of how tonally pleasing or acceptable the piece is to the
listener. A piece with many dissonant chords and an apparently random melody line
would be given a low score. Likewise, a piece that exhibits pleasant chords and melodic
material will be given a high score.

Rhythmic Coherence is a measure of how rhythmically pleasing or engaging the piece is
to the listener. A piece that exhibits totally random rhythmic patterns would be given a
low score. Whereas a piece containing pleasing rhythm patterns would gain a high score.

Phrase Structure is a measure of how structured the piece appears to be to the listener.
Thus, a piece that is one long sequence of notes and chords with no apparent structure
scores badly. Whereas a piece that appears to be built of definite phrases will score well.

Personal Opinion is, as it says, the personal opinion of the listener. This category is an
attempt to mark the “tingle factor”, i.e. that which makes one piece good and another,
equally musically correct, boring. If the listener likes the piece it will score well, if they
don’t it will score badly.

Each category is scored out of ten. The marks are added together to give a total out of
forty which is fed back in to the system as the fitness function for the piece.

5.8 User Interface

A rudimentary user interface has been implemented to test the system. The system
prompts the user for the fitness score for each piece from a generation in turn (see
screenshot in figure 5.14). The choice is then given to go on to generate another
generation or to leave the program.

Y& C+r prompt- gentest?
Jazz by Evolution: test software -- Chris Harte -- 2001

Scores out of 48 for generation O:
g0x0:12

gox1:2

gBx2:14

g0x3:5

gOx4:6

9015 1
gox6:2
gOx7:1
gGXB 5,
g0x9:0
90)(1 0:3
gOx11:
gfx12:
gOx13:
gOx14:5
gox15:86
gOx16:
90X1 i
g0x18:

Figure 5.14: Screenshot of initial user interface

6 Evaluation

This section gives an evaluation of the project’s progress and initial test results. It begins
with a brief look at the progress of the project in terms of time compared to the plan from the
initial report. There then follows a description of the testing philosophy applied to writing
the software. The section concludes with the initial results and analyses of experiments with
the software.

6.1 Project Progress

Figure 6.1 (overleaf) shows a Gannt chart of the project with two sets of timings on it. The
first set (in light grey) of timings is those set out in the planning section of the initial report
(this can be found on the CD in the ‘other documents’ area). The second set (in dark grey)
are those which more closely describe the actual progress of the project. The flow of the
project has been consistent with the plan; the estimated completion times for certain areas,
however, were underestimated in the initial report. One major factor in the project’s actual
progress was the time needed for learning C++. This was not considered an issue of great
importance at the outset of the project as a good familiarity was already held with the C
programming language. However, the crossover time from one language to the other was
longer than predicted which had the cumulative effect of putting the project approximately
four weeks behind schedule. This has prevented a full, conclusive set of results being
gathered.

6.2 Testing

The software for the system was written in stages. At each stage, the class being written was
tested using a ‘test bed’ program, which simulated the conditions under which the class
would be run in the full system (these test programs can be found in the ‘code'testprograms’
folder on the CD). As described in section 4.5, the main test of the software was the
rendering of a ‘hand coded’ piece of music. This was to prove that the Renderer would
produce the correct MIDI file for a given gp_piece. The coded representation of the
rendered piece, ‘Daisy’, is shown in the form of its output text file in Appendix 11.3. The
score of the MIDI file for the piece is shown in Appendix 11.2. Both of these files can be
found on the CD in the ‘examples’ section.

6.3 Experimental Results

Due to the time constraints imposed on the project it is only possible to show preliminary
results for the system’s performance. The experiments detailed here have been run using
comparatively small population sizes over a few generations. The time-consuming nature of
the experiment has prohibited the gathering of results for larger populations over more
generations.

The initial test runs of the system used a population size of ten to show whether the system
was breeding the pieces together properly. Test run 7 was the first to give useful results. The
scores for the initial test runs were given simply on my own subjective judgement.

Run 7 had a few particularly good pieces (comparatively speaking) in consecutive
generations. To see if there was a relationship between them, the full inheritance tree of the
run was traced out using the parent information in the output text files.

53

ssaadodd jpnjop moys saul] yop
‘ssauSoad parorpaid moys saut] wSrT 102104 J0 14Dy PUDL) : [9 24Nl

54

== ! ! m m ' TO/OIGE] @am [FO/9/LE| 1elq [euid poday [euld
[m— . EEELD 1] pugz -Joday |eul
: : ; : Lo/9/8| oMeem | 1L0/S/8T Welg pug -yodey [euld
R R A T) , : : S ;
: . : ' ' LO/SISz| SHeem OL| LO/E6L Welq is| Jodey [euld
[) []
e—— ‘ m m m LO/97L| SWeem g| LO/P/OE| SHnsey WelsAs ejenjers
D — m ' m [OWiZz| Sieeme| Lom/6| WelsAs Bngad pue 1saL
! | — ! ! H
: —m, " ' ' WZEN BRI G WolsAS ejelbau
' ' =3 ' ' '
; ' ' ' 20M 20J
m _.I j m m Vi ZE] R L[vomieg Jopaaig 151
ol m ro/efoe| eem L L0/e/9g Jalepuay 1581
m m P - : : FO/EIOE[eem L[L0/E/92 18psalig o9po)
: : e ; ; Lo/ereg| MeemL] Lo/ereL I91epusy opod
:] ¢ BE== " ' _ -
! ' d ! LO/E/OL| seem gl 10/2/9¢| seIinpolA Jo ubiseq [ewsaju)
: : m — : LO/eIZ| Seam | Lorcieh SRR
: " : P — .
" ' : D — T0/Ziee| SMeem | Loreich ublsaq WajsAS [[EI8A0
: ’ : /3
: m : ' m RN R R yoday [eniuj
; ; m : m TOiCIor| SWeem g| vorels uoneoioads
m ; : ; I.I.. TORZIoT| S¥eem ¥| TOIHZe SISAEUY
] L]]] ' |
: ' : H T Lo/gre| eemL| Lo/iiee buluue|d
' H : : WA soRr e S | -
m . . _ I FEN B EELE I TED UoJeasay [eny|
Zz 1vz loz 16F [8F [ZF [oF [GF [Pt [€+ [cb [+ [O1 8 [Z 1916 v [[[+ [0
aunr AEN udy VRXEIT] ge4 uer pugj| uoneing uels ysel

Generation

g0

2 N 2.

g

Figure 6.2: Inheritance tree for run 7. The crossover of two parents to produce a pair of
children is shown as a small circle with a cross in it

Figure 6.2 shows the full inheritance tree for run 7. The particular individuals of interest
were glb0, glal and glbl from generation 1, g2bl, g2b2 from generation 2, g3a3 from

generation 3 and g4b4 from generation 4 (these files can be found in the ‘results\run7’ folder
on the CD).

55

Generation

g0

g1l

0 EEE)6E))62))6)EE)

Figure 6.3 Inheritance tree for run 7 with the ancestry of 'fittest’ candidates traced

Figure 6.3 shows the tree again with the ancestry of these particular files traced out. It can be
seen that glbl plays an important role in the tree, being parent to four of thefit files in the
next generation.

56

The initial runs were surprising in that the average fitness for the pieces in the population
dropped steadily over each generation, effectively dying out after four or five generations
(see the graph in figure 6.4).

6 H
= SR
: \ S
=4 ‘ -t
7] ; : =
(7] Y
; 2
S 3
& -
@ 2
s S
<3
0
go g1 g2 g3 g4 gs
Generation

Figure 6.4: Graph showing average scores for each generation of run 7

On analysis of the text files for the evolved pieces, the reason for this decline in fitness
became clear. As stated before, in section 5.4, the original plan was to let the crossover point
of the GP fall on any point in the string. This would mean the operation of crossover could
split function blocks in the string. Initially, this was seen as an interesting way in which new
numbers and functions being arranged by the evolutionary process might provide diversity. In
practice, however, the crossover operation was t0o disruptive to the functions and caused the
programs to become syntactically incorrect so that they became impossible to render. To
illustrate this, File extract 6.1 shows the GP for g0x0 of run 7. The generated code is
syntactically correct and it is possible to see the structure of the piece simply by inspection.
Compare this to file extract 6.2 (overleaf), taken from g5a0 of the same run. In this extract
there are only two renderable functions (H,28,7,11 and H,7,183,2) and even these are badly
fragmented.

Genetic Program:

H,20,92,14,I,M,4,21,14,M,2,20,91,M,4,80,78,M, 12,91,53,M,4,74,6
9,H,20,84,29,H,24,1,77,M,8,18,6,H,48, 1, 86,

File Extract 6.1: GP string from g0x0 of run 7

57

Genetic Program:

H,20,9M,,,2HD,,2,7H,,28,7,,,,,11,,M,,4M12M97,,42H,9I,H,7,,183,
;2

File Extract 6.2: Disrupted functions in the GP string from g5x0 of run 7

The solution to this problem was to make the crossover operation split strings only at points
in between functions. The method used to perform crossover in this way is discussed in
section 5.4.

Once the amendments had been made to the crossover process, the test was enlarged to a
have a population size of twenty. Two friends were persuaded to take time out to do the
experiment. The test requires approximately half an hour per generation, as the pieces are
each around a minute long. This makes testing even a small number of generations several
hours work.

The initial results of these experiments were interesting. The average marks across the first
run in each case dropped initially then appeared to start rising again (see figures 6.5 and 6.6).
It must be noted that this is only an observation of the results recorded. The number of
generations is too small in both cases to be sure the trend would continue. In both cases the
judges insisted that the material was becoming subjectively better at the end of the test
despite the values for the average marks. It is therefore suggested that a lack of familiarity
with the test will account for the high scores in the first generation of each.

—_
N A

-
o

Average Fitness

o N O~ o o

go g1 g2 g3
Generation

Figure 6.5: Graph of average marks over run-J1

58

18
16
14
12
10

Average Fitness

o N B OO @

g0 g1 g2 g3
Generation

Figure 6.6: Graph of average marks over run-S1

When one of the judges did the experiment for a second time, the results were much more
encouraging. This time was familiar with the test and the marks given were representative of
that. The graph in figure 6.7 shows a definite upward trend in the average marks over the
subject’s second run.

18
16
14
12

R e

Average Fitness Score

o N b~ O @

g0 gl g2 g3 g4 g5
Generation

Figure 6.7: Graph of average marks over run-52

59

During this run the judge noticed a particular musical idea which appeared in several of the
fittest pieces over the different generations. This was the short chord sequence: F G#M®6
BbM6(9)/C (see figure 6.8) which brought to mind a track off ‘Nuyorican Soul” (an extract of
which can be found as a .wav file on the CD in the ‘examples’ folder).

Figure 6.8: Chord sequence as it appears in the opening of piece g3al from run 52

This sequence first appears in generation 3 where it occurs in two pieces: g3al and g3a5. It
was noted that the chords appeared twice in g3a5 (see figures 6.9 and 6.10).

1
p: yﬁ ‘ : — .8.
F o i WC = N . . .

i

i
I
03 171

| by

Es

Figure 6.9: first occurrence in g3a5

Bb7#5 - FRI(H5 IGH - - G - GHIGH

T -
:

1T
iy

figure 6.10: second occurrence in g3a5

60

On closer inspection it was found that the sequence also appears again in g3al but this time it
is transposed up, starting on the chord of D (see figure 6.11) hence the progression becomes
D FM6 GM6(9)/A.

bbg
b_jb B:m ; F7

; % |
s 5 - . - FM6F GM6OYA -FF - B¥. ‘I_gf-‘—"
. . - - P
e : —F—* 1 —

Figure 6.11: second occurrence, transposed, in g3al

The sequence appears in generation 4 in pieces gd4a6 and g4a7. In both files it has been
transposed, starting on G (see figure 6.12).

B o - : —
%ﬁ- g Ege———+
| = ——
. Bms(311) - A BbM6mBb . . CMEE)D . . :
T = = === —+
1 = LA 1 -

Figure 6.12: Occurrence of sequence in g4a6 — bars 8/9

The fifth generation has a further two pieces in which the pattern occurs. The sequence in
g5a0 can be seen in figure 6.13.

Figure 6.13: Occurrence of sequence in g5a0 — bars 7/8

6l

The progression was not noticed in any pieces from generations 0, 1 and 2. To determine
where it came from the code of g3al was analysed. The GP string for g3al is shown in file
extract X.

a)

Genetic Program:
H,32,43,10,T,10,H,32,34,8,M,8,13, sg,M,4,69,74,D,10,M,4,54,47,H
,24,11,10,s,88,H,8,85,76,H,20,91,18

b)

Index Harmonic-Rhythms Harmonic-Progression: Type, extension, root, inversion, rest
10 (2 , 11) (0 , 1, 64, 0, 0)

11 (0 , 11) (L, 3, 55, 4, 0)

12 (8 , 1) (L, 2, 57, 4, 0)

[File Extract 6.3: a) GP string from piece g3al of run S2, b) point on harmonicprogression
chromosome where the chord sequence lies]

As the chord sequence opened the piece, it was easy to determine the point where it was
located on the harmonic-progression chromosome (i.e. point 10). The parents of g3al were
g2b7 and g2a2. The sequence itself came from the harmonic-progression chromosome of
g2a2. The harmony block that makes it appear in the music came from g2b7. This shows
that the sequence was not a visible part any of the pieces generated initially. It emerged due
to crossover between g2b7 and g2a2 after the second generation.

These results are encouraging as it could be argued that this is an example of schema theory in
operation. That is to say, the short chord progression forms part of a particularly fit schema.

62

7 Further Work

This section outlines those areas of the project that require further work and those that may
merit further investigation. These are presented as a series of miniature project specifications
to provide starting points for possible future projects.

7.1 Mutation in the System

The current system does not implement mutation at either the GA or GP levels. Mutation at
the GA level would consist of picking a random point on a chromosome and altering its
value. It is suggested that the system of selecting a new value from a statistical distribution
around the current value be employed. This approach fits neatly with the music
representation, as a fairly good area on the chromosome could, with a small change,
potentially become highly fit.

Mutation in the GP should also follow this scheme. A random character (or number) from
the string should be replaced with another character chosen from a statistical distribution
around the current value.

The points for mutation code to be added are commented in the breeder functionsgp_breed
and ga_breed (see breeder.cpp on the CD).

7.2 Windows User Interface

The current system test software has a rudimentary DOS user interface. The system would be
made more user-friendly if a new user interface was coded for use in the Windows
environment. At the present time, the user must play each MIDI file using an external piece
of sequencing software. A useful addition to a new user interface would be to link a MIDI
file player to the system software itself. Figure 7.1 shows a possible layout of a Windows
interface for Jazz by Evolution.

w. Jazz by Evolution =10]]
Current Population GA Crossover Rate 2% GP Crossover Rate 2%
3::3 GAMustonRate [5% GP Mutation Rate 0%
qlal
o Generation 1 Individual a4
glb2
glal Current Indiidual

163
Name 1ad Running Time 102
glbd N
Parenta gOx1 Size 248

Parenth ghxd

Fithess Score 34

Play individual '

Create Next Generation ‘

Figure 7.1: Jazz by Evolution: Mock up of windows interface

63

7.3 Splitting the Test in time

A problem, highlighted when users did the experiment, is the necessity for the test run to be
completed all in one go. At present, there is no facility for saving the current generation of
pieces so that the experiment may be continued at another time. To test the system properly
for large population sizes over many generations such a facility must be added, as there is a
limit to how long one human judge can spend on the test at any one time.

Serialisation of the gp_piece class into a file, and the ability to read such files back, would
make much longer experiments possible as judges could then pick the test up, from where
they left it, at their convenience.

7.4 Musical Fitness Tests

The system currently uses a human judge, working to a set of subjective criteria, to grade the
fitness of each piece. This means, for example, to test a generation of twenty pieces, each
about a minute in length, will take almost half an hour; to test ten generations of a hundred
individuals will take over twenty four hours. The current fitness test becomes prohibitively
long for experiments with larger populations over more generations. It is necessary to test
large population sizes over many generations to gather significant, meaningful results. A
machine fitness test that removes, or at least diminishes, the requirements of a human judge is
therefore necessary to make such experiments practical. Several approaches to a machine-
fitness test are now considered:

7.4.1 Automatic Elimination of Unsuitable Individuals

For some of the individuals produced by the system, it is possible to identify them as being
poor simply by inspection. An unsuitable individual may be a MIDI file containing only one
or two notes or even none at all (not enough to constitute a piece of music). Clearly, for such
a file, it is unnecessary to apply the subjective human fitness criteria, as it cannot possibly
score well.

An automatic test function that identifies these poor individuals may be devised to filter out
such pieces in order to speed the human judgement process up. There are many ways in
which such a test may be implemented.

An initial approach might be to check the size of the individual’s MIDI file. Each MIDI
message (see Section 5.6) will be approximately 14 bytes in length, each chunk header
around 12 bytes, each Meta-event around 16 bytes and each track-end event 3 bytes.
Therefore, an approximate, minimum acceptable length for a MIDI file output by the system
can be defined. Consider a track containing one melody note, one 4-note chord (plus a lyric
event of the chord name) and one bass note:

File header: 12 bytes

Track 0 header: 12 bytes (Dummy Track)

Track 0 data: 2 x 16 + 3 = 35 bytes (Key and time signature events plus track-
end)

Track | header: 12 bytes (Melody Track)

Track 1 data: 16 +14 + 3 = 33 bytes (initial tempo, one note and track-end)
Track 2 header: 12 bytes (Chord Track)

Track 2 data: 4 x 14 + 16 + 3 = 75 bytes (4 notes in a chord, lyric event and track-
end)

Track 3 header: 12 bytes (Bass Track)
Track 3 data: 14+ 3 = 17 bytes (One bass note plus track-end)

Total number of bytes = 12 +12 +35 +12 +33 +12 +75 +12 +17 = 22) bytes

The file described above obviously does not constitute a piece of music worth judging with
the human test. As a result we can see that a MIDI file produced by the system must be more
than 220 bytes in length so any MIDI file that is shorter should be ignored.

A MIDI file containing several chords but no notes in the melody line would easily pass the
file size test, though it is still an unsuitable individual. Therefore, a further development of
this idea would be to check each track individually. Each track has a set minimum length (for
example, the lengths derived above) so if any track falls short, the file can be rejected.

7.4.2 Codifying Musical and Jazz Rules

It may be possible to code many of the musical rules described in section 3.3.3 into rule-
based tests. The Harmonic-preference rule, for example, [24] could be coded so that a test
runs through the chord progressions of a piece and assigns a mark to each chord transition
according to the distance moved between the chords on the line of fifths. The average of
these marks would be an indication of how acceptable the harmonic scheme of the whole
piece is.

The music produced by the system may not be in the same meter as the file suggests (i.e. the
MIDI file defaults to 4/4 at 120bpm but the music may not be). To apply the strong-beat rule,
the piece could be recorded as an audio file then digital signal-processing techniques (fast
auto-correlation for example) could be applied to find where the meter really lies and how
strong it is. The average power on the strong-beats should be higher than that of weak-beats.

7.4.3 Neural Networks and Pattern Matching

Although previous research has shown neural networks to be poor at handling time, they are
very good at pattern matching. A possible application of a neural network as part of a larger,
integrated fitness evaluation could be to recognise patterns in the GA chromosomes.
Consider the case of the melody-pitches chromosome. As described in section 4.3, the
melody-pitches chromosome stores a sequence of pitches which is the source material for
motives.

A set of equivalent pitch sequences could be derived from jazz melodies and solos (Charlie
Parker solos for example). These might be used as a training set for a neural network which
could be used to recognise potentially good material in the melody-pitch chromosome of a
piece.

65

Another area where pattern matching could be used would be to identify structures in the
genetic program. Repeated or similar structure in the GP string may give a clue to how much
reuse of material occurs in the piece. There are techniques that would spot such patterns in
the music itself but as there is already an abstract representation available (the string itself) it
would seem sensible to use it. A pattern-matching test on the GP would also be capable of
finding transformations of material faster than testing the MIDI file, as the transformation
operators are part of the coded string as well.

7.4.4 An Integrated Approach to the Musical Fitness Test

Many of the fitness tests used in evolutionary systems for music composition try to apply a
general test to decide whether the music is ‘good’ or ‘bad’. Biles’ neural network fitness
function [5], for example, is trained to imitate the human mentor’s responses, but is
unsuccessful. This is because the system tries to model the responses of the mentor without
modelling the perception and reasoning behind those responses.

We listen to many different elements of the music at many different levels. The human
fitness test described in section 5.7 is split in to four categories which is an attempt to give
some of these different elements separate marks in order to make the test more fair. A
possible approach to the fitness test problem may be to have several different fitness
algorithms, which test the different elements in parallel and provide an overall fitness mark
for the piece. These tests could include any or all of the approaches mentioned earlier in this
section. A possible topology for such a test system is shown in figure 7.2.

___gp.pece . - o = SEoresTor
(GAamays [T "~ Neural Networks . — Melodic Material
; —————l| ! Yo . — T Harmonic Progression
Genotype == A=T Rhythmic Material
. [GP String]\ \
- _ Structure Test '—— 4 o o Skruclure\
Combined Fitness
v .
[| Score for Piece
File Size Test | Suitable Individual? / 3
¥) . Meter N
DSP Function —* .
- | AudioFile Stong-beat -
Phenotype MIDI File

—

\5_ Human Judge — Subjective Judgement

Figure 7.2: Multiple fitness tests

66

A human judge is still necessary to act as a control for the tests. However, this approach
could potentially alleviate the fitness bottleneck by guiding the judge to the potentially best
pieces. If such a test scheme was found to give good results, full control could be handed to
it.

7.5 Improving the Renderer’s performance skills

The Renderer only has one voicing for each particular chord type. A real jazz pianist uses
many different voicings [10] when playing. The MIDI files that are produced by the
Renderer would sound more natural if it could play a wider range of voicings (see figure 7.3).

A Q
7 (o) [e)
ANAYJ < S o

e) S

Figure 7.3: Different voicings of a C7 chord; thepresent Renderer can only play the fist one

The choice of voicing depends on many factors including the preceding chord and its voicing,
the next chord and its possible voicings and what is happening in the melody line.

A level of artificial intelligence must be added to the Renderer for it to create chord parts that
use different chord voicings. A possible solution is to use a rule-based approach and hard
code a model of the rules a jazz musician instinctively follows when playing. Some of these
rules can be found in jazz texts [10, 11]. Where others are less well defined, an element of
probability will have to be added to the decision process to complete the model.

7.6 Music File Compression
During the course of the project, it was noted that the genetic representation, developed for
the system, might have unforeseen benefits in compressing music. It was suggested that the

representation of a piece, if written to a disk, would take up less space than its equivalent
MIDI file.

To test this hypothesis quickly, consider the example piece ‘Daisy’ analysed in section 4.5.
The MIDI file of this piece (see Appendix 11.2) is 1,803 bytes long. If the genetic
representation of the piece can be stored in fewer, there is a strong case for further
development of the idea. To find the number of bytes required to store the representation, the
analysis must be reviewed.

The analysis in Section 4.5 produces 11 FIGURESs in melody-rhythms, 44 NOTEs in melody-
pitches, 14 FIGUREs in harmonic-rhythms and 30 CHORDs in harmonic-progression.

FIGUREs, NOTEs and CHORDs are structures that are built from int and bool data types
as defined in C++. An int is two bytes long and a bool is one bit. For the sake of
argument, let us imagine that a bool takes up one byte in a file on disk. ANOTE consists of
one int and one bool value so requires three bytes of disk space. A FIGURE consists of
two int values which is four bytes. A CHORD consists of four int values and one bool
which is nine bytes. The total number of bytes required to store the GA information is
therefore:

67

FIGUREs: (11+14) x 4 =100

NOTEs: 44 x 3 =132
CHORDs: 30x9=270
Total: 100 + 132 + 270 = 502 bytes

The GP of ‘daisy’ is 244 characters long. Each character is one byte long therefore adding
this to the GA total gives:

Total required space: 502 + 244 = 746 bytes

Even taking the need for a file header in to consideration, this is less than half the size of the
equivalent MIDI file. :

The GP data can be compressed further. The data is stored as a comma-delimited character
string. This means that, allowing for numbers of more than one digit, just under half of the
244 characters are commas and are therefore constitute redundancy in the string. Thus, if all
the commas are removed and the numerical values stored as integers then there are further
possible space savings.

This is the result for a piece that has been analysed by hand and, as such, is unlikely to be the
most efficient coding. Techniques such as fractal compression and pattern matching could be
employed to generate, automatically, the sequences of notes, figures and chords and the GP
itself.

The representation is limited in that it currently describes only one melody part and one chord
sequence. It would be possible to include more melody parts simply by adding more motive-
style functions to the GP language. The chord and rhythm vocabulary of the system can also

be extended easily; using int gives 65,535 possible values.

68

8 Final Conclusions

The aim of this project was to investigate ways in which evolutionary algorithms could be
applied to the composition of Jazz music and, if feasible, implement a system that would
perform this task.

The disciplines that the project combines, namely Jazz, Evolutionary Computing Techniques
and Algorithmic Composition have been thoroughly researched and are presented in Section 3
of the report. A brief explanation of Standard MIDI Files is also given as these were used in
the implementation of the composition system.

A design for the Jazz composition system has been presented in Section 4 of the report. The
design started with the definition of an Abstract Model for a Jazz piece. A twolevel genetic
representation for the model, using both Genetic Algorithms and Genetic Programming
techniques, was then proposed and demonstrated by encoding a real piece of music.

A two-level evolutionary composition system has been implemented in C++. The various
algorithms and techniques used in the implementation of the system have been outlined in
Section 5 of the report.

The initial implementation of the system was tested and the design was found to have a flaw
in the way it treated crossover of Genetic Programs. This problem was overcome and the
current system has been demonstrated to function properly in several separate test runs. The
results of these tests have been analysed and presented in Section 6. The initial findings
presented here are encouraging but are not conclusive.

From the initial test runs, the system has been shown to be capable of producing passable, if
slightly avant garde, Jazz. It is possible, with greater population sizes and longer test runs,
that the system might be able to produce more conventionally acceptable pieces. The major
factor limiting the success of the system is the fact that a human judge is still required to
evaluate the fitness function. This has made the evolutionary cycle of the system very slow.
As a result of this, the subject of a machine fitness test and how it may be approached has
been discussed as further work in Section 7.

Other areas of further work have been identified and discussed as potential starting points for
future projects. Most are extensions to the system, such as the implementation of the
mutation operator and the programming of a Windows interface for the system.

One additional, interesting area of possible future work that has come to light is the apparent
ability of the genetic representation to store the information describing a piece more
efficiently than its corresponding MIDI file. The last part of Section 7 discusses the potential
use of the representation for music file compression showing, through a thought experiment,
that it is an idea that merits further investigation.

69

9 Acknowledgements

I would like to thank:

Andy Tyrrell and Andy Hunt for their enthusiastic and helpful supervision of my project,
Sarah Moore and Julia Sheppard for performing the experiment,

Simon Taylor for proof reading my report,

Mark Slaymaker, Justen Hyde and Oliver Hancock for their help in providing valuable leads
for my initial research,

and finally, the guys from the Biolnspired Office for putting up with me for Six months.

70

10 References
[1] Allcock D. 1992 Illustrating C Cambridge University Press.

[2] Alpern, A. 1995. “Techniques for Algorithmic Composition of Music™ Available on the
World Wide Web at: http://hamp.hampshire.edu/~adaF92/algocomp/algocomp95.html

[3] Biles, J. A., 1994, “GenJam: A Genetic Algorithm for Generating Jazz Solos”,
Proceedings of the 1994 International Computer Music Conference, pp.131-137, San
Fransisco: International Computer Music Association.

[4] Biles, J. A., 1995, “GenJam Populi: Training an IGA via audience-mediated
performance”, Proceedings of the 1995 International Computer Music Conference, pp.347-
348, San Fransisco: International Computer Music Association.

[5] Biles, J. A., Anderson, P. G., and Loggi, L. W. 1996 “Neural network fitness functions for
a musical GA” Proceedings of the International ICSC Symposium on Intelligent Industrial
Automation (IIA°96) and Soft Computing (SOCO'96), pp.B39-B44). Reading, UK:ICSC
Academic Press.

[6] Burton, A. R., and Vladimirova, T., “Generation of Musical Sequences with Genetic
Techniques”, Computer Music Journal, 23:4, pp.59-73.

[7] Beckert, D. “Algorithmic Composition” Available on the World Wide Web at:
www.digitale-medien.de/beckert

[8] Chomsky, N 1957. Syntactic Structures. The Hague. Mouton Publishers.

[9] Cope, D. 1993. “Algorithmic Composition [re]Defined.” ICMC '93 pp. 23-5

[10] Coker, J., 1967, Improvising Jazz, Simon & Schuster, Inc.

[11] Collier, G. 1975, Jazz: A Student’s and Teacher’s Guide. Cambridge University Press

[12] Goldberg, D. E. 1989, Genetic Algorithms in Search, Optimisation, and Machine
Learning. Addison-Wesley

[13] Green, N. P. O., Stout, G. W., and Taylor, D. J. 1984, Biological Science 1: Organisms,
Energy and Environment Ed. R. Soper, Cambridge University Press.

[14] Hancock, O. 2000. Music Technology: the state of the art MSc report Dept. of
Electronics, University of York.

[15] Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, Ann Arbor,
University of Michigan Press (Second Edition: MIT Press, 1992)

[16] Huron, D., 1992 “Design Principles in Computer-Based Music Representation”,
Computer Representations and Models in Music, Academic Press, pp. 5-39.

[17] Jacob, B. L., 1995 “Composing with Genetic Algorithms”, Proceedings of the
International Computer Music Conference, Banff Alberta.

[18] Jacob, B. L. “Algorithmic Composition as a Model of Creativity” Available on the
World Wide Web at: http://www.eecs.umich.edu/~blj/algorithmic_composition/

[19] Johanson, B., and Poli, R., GP-Music: An Interactive Genetic Programming System for
Music Generation with Automated Fitness Raters, ™ Available on the World Wide Web at:
http://graphics.stanford.edu/~bjohanso/gp-music/

71

[20] Jones R. A., and Karp A., 1986 Introducing Genetics John Murray Publishers Ltd.

[21] Koza, J. R., 1992, Genetic Programming, On the Programming of Computers By Means
of Natural Selection, Cambridge MA: MIT Press/Bradford Books

[22] Langdon, W. B., 1998, Genetic Programming and Data Structures Kluwer Academic
Publishers.

[23] Lee, L. S., “The Perception of Metrical Structure: Experimental Evidence and a Model”,
Representing Musical Structure, Howell, P., West, R., and Cross, I. (Eds.), Academic Press,
pp. 33-127

[24] Lerdahl, F., and Jackendoff, R. 1983, 4 Generative Theory of Tonal Music, Cambridge,
Ma.: The MIT Press.

[25] Lerdahl, F., 1991, “Underlying Musical Schemata”, Representing Musical Structure,
Howell, P., West, R., and Cross, L. (Eds.), Academic Press, pp.273-290.

[26] Levy, S., 1992, Artificial Life, Penguin Books.

[27] Lones, M. 1998 Evolutionary Genetic Models and the Line Labelling problem: A Review
of the Literature 3" Year Project, Dept. Computer Science, University of York.

[28] McAlpine, K., Miranda, E., and Hoggar, S. 1999 “Making Music with Algorithms: a
Case-Study System”, Computer Music Journal, 23:2, pp. 19-30

[29] Michalewicz, Z, 1992, Genetic Algorithms + Data Structures = Evolution Progams
Springer

[30] Milano, D. (Ed.) 1987, Mind over MIDI GPI Publications

[31] Schildt, H. 2000, C/C++ Programmers Reference, Second Edition Osborne, McGraw
Hill

[32] Schuller G. 1968. Early Jazz: Its roots and musical development Oxford University
Press.

[33] Spector, L., and Alpern, A., 1995, “Induction and Recapitulation of Deep Musical
Structure”, Proceedings of the IJCAI-95 Workshop on Artificial Intelligence and Music.

[34] Stearns, M. W. 1956. The Story of Jazz Oxford University Press

[35] Temperley, D., and Sleator, D., 1999 “Modelling Meter and Harmony: A Preference
Rule Approach”, Computer Music Journal, 23:1, pp. 10-27.

[36] Thywissen, K. 1999 “GeNotator: An environment for exploring the application of
evolutionary techniques in computer-assisted composition.” Organised Sound 4:2 pp. 127-33.

[37) The MIDI file format, 1998, Available on the World Wide Web at:
http://ourworld.compuserve.com/homepages/mark_clay/midi.htm

[38] Todd, P. M., and Werner, G. M., 1998 “Frankensteinian Methods for Evolutionary
Music Composition”, Musical networks:Parallel distributed perception and performance.
Griffith, N. and Todd, P. M. (Eds.), Cambridge, MA: MIT Press/Bradford Books

[39] Waschka II, R. 1999. “Avoiding the Fitness ‘Bottleneck’: Using Genetic Algorithms to
Compose Orchestral Music” ICMC 1999 pp. 201-3

72

[40] Xenakis, I. 1971 Formalized Music: Thought and Mathematics in Music, Pendragon
Press

73

11 Appendices

11.1 A Guide to the CD

Please load Welcome.html

CD —

— Examples

Contains: Daisy examples and
‘Nuyorican Soul’ extract

— Code

Contains all code
for the System

— Results

Contains results
from the tests

— Report
Final Report Word Files

— Other Documents
Initial Report

Pseudo Code and
Spreadsheets

74

11.2 Test Score ‘Daisy.mid’

The notation package that daisy.mid was loaded into shows the crotchet-quaver pairs as
dotted-quaver-semiquaver pairs. The actual rhythms are correct as can be heard from the file
on the CD.

Melody

Chords

g : 4 : =
F FMJT/A BbMé6 BbD F F/A CTC7E F F7/A Gmé Gm7/F C

X T 1.-‘-‘ T—1 T ——t
Bass Line % T +—1 . —+ } 1 T I T = 8|
T . I | 1 | — 1 —

5ﬁ ("
v o - &
—
O 1 | "
1 I o —
? Z i == =
CTE CMé CE F F/A BbMBbM7/AF
- he:
o L= L 4 ot S |
? g:":, —— = = — =]

i
.
1
(1
A\
[
'
=223

D
L
il

1

d e e e

BbM7 FM9/A BbM7 FM7/A FMLHC C7 F FM!

9
|). o r 2 - .
s 1 ! 1 L1 1 | = I
= : : 3 H S : I —
X 1 1 1 1

75

11.3 Test File ‘Daisy.txt’

Name:

]

Pl: parentl
O

P2: parent2
a

Initial Values:
O

Tempo: 100

a

Transpose: 0
O

Dynamic: 60

a

a

Index Melody Rhythms:
0 (0, 4)
1 (0 , 4)
2 (0, 4)
3 (0 , 4)
4 (1, 4)
5 (1, 4)
6 (3 , 4)
7 (1, 4)
8 (10 4)
9 (0 , 8)
10 (2 , 4)
11 (1, 4)
12 (0, 4)
13 (0, 4)
14 (0, 4)
15 (0, 4)
16 (0, 4)
17 (0 , 4)
18 (0, 4)
19 (0 , 4)
20 (0, 4)
21 (0 , 1)
22 (0 , 1)
23 (0 , 1)
24 (0 , 1)
25 (0, 1)
26 (0, 1)
27 (0, 1)
28 (0 , 1)
29 (0 , 1)

daisy

(67
(72
(69
(65
(60
(62
(64
(65
(62
(65
(60
(65
(62
(64
(65
(67
(69
(60
(72
(60
(62
(65
(62
(65
(69
(62
(60
(62
(61
(59

B T T S N T . . T T T T T TR TR TR TR T R R B T]

Melody Pitches:
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
1)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

76

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
13
74
75
76
77
78
79
80
81
82
83

(0
(0
(0

(0
(0
(0

(0
(0
(0
(0
(0

(0
(0
(0
(0
(0
(0
(0
(0

(0
(0
(0
(0

(0
(0
(0

(0
(0
(0
(0
(0
(0
(0
(0
(0

(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0

i T S T T . . TR N EEE VENT W T B L B T T T T T I T N A T A S T T T S

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
L
1)
1)
1)
1)
1)
L)
1)
1)
1)
1)
1)
1)
1)
1)

(64
(6l
(60
(69
(70
(67
(72
(69
(72
(69
(65
(67
(60
(60

(0
(0
(0
(0
(0
(0
(0
(0
(0

(0
(0
(0
(0

(0
(0
(0

(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0

. T T T U VL T S T T N T T . T T R T T T S B S S

T T T T T U T T T T

0)
0)
0)
0)
0)
0)
1)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

0)
0)
0)

77

B . T O U T T TR T

r

r
r
r
r
r
r
r
’
r
’
r
r
r
r
’
r
r
r
’
r
r

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

el=R=ReoReloReoRololeNeNeNelleleollellellolee]

o

T T T T T U U T T N T T I]

84 (0, 1) (0
85 (0 , 1} (0
86 (0, 1) (0
87 (0 , 1) (0
88 (0 , 1) (0
89 (0, 1) (0
90 (0 , 1) (0
91 (0 , 1) (0
92 (0 , 1) (0
93 (0, 1) (0
94 (0 , 1) (0
95 (0 , 1) (0
96 (0 , 1) (0
97 (0 , 1) (0
98 (0, 1) (0
99 (0, 1) (0
Index Harmonic Rhythms: Harmonic
0 (0, 8) (0
1 (0, 8) (2
2 (0 , 4) (1
3 (0 , 4) (0
4 (0 , 4) (0
5 (0, 4) (0
6 (0 , 8) (7
7 (0 , 4) (7
8 (1, 4) (0
9 (0 , 8) (7
10 (0, 4) (4
11 (0, 4) (5
12 (0 , 4) (0
13 (2 , 4) (7
14 (0 , 16) (1
15 (0 , 4) (0
16 (0 , 4) (0
17 (0 , 4) (0
18 (0 , 4) (1
19 (0 , 4) (2
20 (0, 4) (0
21 (0, 1) (11
22 (0 , 1) (2
23 (0 , 1) (2
24 (0 , 1) (2
25 (0, 1) (2
26 (0, 1) (2
27 (0 , 1) (2
28 (0 , 1) (7
29 (0 , 1) (0
30 (0 , 1) (2
31 (0 , 1) (0
32 (0 , 1) (0
33 (0, 1) (0
34 (0, 1) (0
35 (0 , 1) (0

T I T T T T T T

oOooo0oOocoOoOMNODOODONO OO

B N T T T T T R T T T T N]

Progression:
65 , 0, 0)
65 , 1, 0)
70 , 0, 0)
70 , 1, 0)
65 , 0, 0)
65 , 1, 0)
60 , 0, 0)
60 , 1, 0)
65 , 0, 0)
65 , 1, 0)
67 , 0, 0)
67 , 3, 0)
60 , 0, 0)
57 , 1, 0)
57 , 0, 0)
57 , 1, 0)
62 , 0, 0)
65 , 1, 0)
70 , 0, 0)
70 , 3, 0)
65 , 0 , 0)
66 , 1, 0)
65 4 L , 1)
65 , 1, 0)
70 , 0, 0)
65 , 1 , 0)
70 , 0, 0)
65 , 2 , 0)
60 , 0, 0)
65 , 0, 0)
65 , 0, 0)
0, 0,1
o, 0, 1)
0o, 0, 1)
o, 0,1
o, 0, 1)

78

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
21
72
73
74
Th
76
7
78
79
80
81
82
83
84
85
86
87
88
89

wh-\-\\\\q‘--.-n--uq.-n-‘---\\\\w---\\\q\-.\h-\--uq.-uqq‘----

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0

(0
(0
(0
(0
(0
(0
(0
(0
(0

(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0

(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0
(0

(0

\“\Hﬁ\‘\\ﬁ'\‘h‘-‘-‘-\\\“"‘!\‘-‘5!\“‘\"‘-\‘-\“wh\‘-\\\\\\“\\

OOODOOOOOOOODO

\\\‘\\‘-\\\‘I\'q\'l'-'-'u\‘\‘n'-'-\\\\\\1‘\\\\\\\\\-'-'-‘-\\\“\‘\\

OOOOOOOOOOODOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOODDOOO

N T T T T T T T T TR T S S T T T S U THN T T N N T T B . T A S S A

OOOOOOOOOOOOOOOOOC)OOOOOOOOOOOOOOOODOOOOOOOOOOOOOODOOOO

‘\i\\\\\“‘h\ﬁﬁ\\\\i‘!\\\\\“w‘lﬁ\‘uN‘\-hﬁ\\sh\“\h\\\\\

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

79

90 (0 , 1) (0,0, 0, 0,
91 (0, 1) (0, 0,0, 0,
92 (0 , 1) (0,0, 0,0,
93 (0, 1) (0,0, 0, 0,
94 (0, 1) (0,0, 0,0,
95 (0, 1) (0,0, 0,0,
96 (0, 1) (0, 0,0, 0,
97 (0, 1) (0,0, 0, 0,
93 (0, 1) (0, 0,0, 0,
99 (0 , 1) (0o , 0, 0, 0,

Genetic Program:

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

H,32,0,0,D,100,M,16,0,1,M,8,6,5,M,4,3,42,H,16,2,6,M,16,0,0,H,16,4,10
,M,8,6,12,M,8,3,35,T,3,H4,16,7,13,7,8,M,8,6,27,T,5,M,8,8,25,T,0,H, 16,
7,17,T7,0,R,M,8,4,21,R,M,8,10,17,R,H,16,10,22,M,8,4,8,M,4,7,8,M,4,6,3

2,H,16,4,27,M,8,6,38,M,8,9,40,H,16,14,30

80

	20070920170458304.pdf
	20070920170634430.pdf

