
ON THE PREPARATION AND VALIDATION OF A LARGE-SCALE DATASET 

OF SINGING TRANSCRIPTION 

 

Jun-You Wang, Jyh-Shing Roger Jang 

 

Dept. CSIE, National Taiwan University, Taiwan 
 

ABSTRACT 

 

This paper proposes a large-scale dataset for singing transcription, 

along with some methods for fine-tuning and validating its 

contents. The dataset is named MIR-ST500, which consists of 

more than 160,000 notes from 500 pop songs. To create this large-

scale dataset, we set some labeling criteria and ask non-experts to 

label notes. We also perform some adjustments on the annotation 

to correct minor errors. Finally, to validate the dataset, we train a 

singing transcription model on MIR-ST500 dataset and evaluate it 

on various datasets. The result shows that we can certainly 

construct a better singing transcription model for various purposes 

using MIR-ST500, which is properly labeled and validated. 

 

Index Terms— Automatic singing transcription, dataset 

preparation, dataset validation, music information retrieval 

 

 

1. INTRODUCTION 

 

At the era of machine learning, a reliable large-scale dataset is of 

utmost importance for successful applications. However, for some 

tasks in MIR (music information retrieval), the creation of large-

scale datasets is difficult due to the requirement of accurate labels. 

One example is automatic singing transcription (AST) which 

focuses on converting singing voice to sheet music. Such a dataset 

for AST is hard to come by due to the tremendous amount of 

effort needed to label the onsets/offsets/pitch of each note 

precisely. One of the evaluation frameworks [1] set the “onset 

tolerance” to 50ms, which, in terms, requires a strict labeling 

criterion, making the labeling process extremely time-consuming 

and leading to relatively small scale of the datasets [1-2]. 

In this work, we take another route by setting several easy 

rules for non-expert transcribers to label a large number of notes. 

Then we perform several automatic adjustments on the onsets to 

eliminate most errors. Admittedly, there may still be some 

undetected errors. But the advantage of the large-scale dataset 

usually outweighs minor errors in the dataset, as revealed by our 

task of dataset validation in Section 4. 

 

2. RELATED WORK 

 

There are several datasets that could be used for AST. We classify 

these datasets into two categories: “created for AST” and “not 

created for AST”. 

Created for AST: ISMIR2014 dataset [1] and TONAS 

dataset [2] are created for AST. The scale of these datasets is not 

large, and these datasets are all labeled by experts. 

Not created for AST: AIST annotation of “RWC Music 

Database: Popular Music” [3] provides note-level annotations of 

100 pop songs, which could be used for AST. However, the 

annotation is not created specifically for AST, so we do not know 

if the annotation is accurate enough. DALI dataset [4] is another 

dataset with note annotation of singing voice. However, DALI’s 

transcription is created automatically with inevitable errors [4]. 

For the adjustment of onset labels in our dataset, we use 

MIR-1k dataset [5] to train a model to perform onset adjustment 

automatically, as will be explained in Section 3.4. 

For the AST model, traditional models for AST employ 

Hidden Markov Model (HMM) to model the transition of notes 

[6-8]. Recently, Long Short-Term Memory (LSTM) model [9] and 

ResNet-18 [10] are also utilized due to their end-to-end nature. 

 

3. METHODOLOGY 

 

3.1. Dataset Overview 

 

The proposed “MIR-ST500” dataset consists of 500 pop songs, 

mostly in Chinese, from Youtube. The vocal parts in the songs are 

monophonic, but they may contain instruments. The duration of 

the dataset is about 30 hours, and the number of notes is 162,438. 

The dataset is available at http://mirlab.org/dataset/public now. 

 

3.2. Annotation Procedure 

 

We assigned non-experts to one of two groups, “transcribers” and 

“verifiers”. To start with, a transcriber downloads a pop song from 

Youtube and labels its notes one by one. To make the process 

more efficient, a baseline AST program can be used to generate 

the initial labeling. Transcribers are encouraged to use a MIDI 

editor to label notes, so they can listen to their annotation at left 

channel and the original music in the right channel simultaneously, 

making comparison/labeling/correction easier. 

After labeling, a verifier is asked to verify and decide if the 

annotation is acceptable. If the verifier finds any mistake, the 

transcriber should relabel the song until no mistake is found by the 

verifier. Only those labels agreed by both transcriber and verifier 

are included in the dataset. 

To make the annotation more objective and consistent, we 

have defined several intuitive labeling rules shown next.  

⚫ Pitch: The groundtruth is labeled as the pitch that should be 

sung on, i.e., the “score pitch”, which should be integers of 

semitones (MIDI numbers). 

⚫ Onset: Onsets should be placed before the voiced part of the 

note. If there is an unvoiced part at the beginning, 

transcribers can place onsets at any place within the leading 

unvoiced segment. For example, if the lyrics of a note is 
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“sing”, the onset can be placed at either the beginning of “s” 

or the beginning of “i”. Since it is hard to identify the start 

position precisely, we gave labelers more flexibility in order 

to make the labeling process easier. 

⚫ Offset: For the offset of notes, we did not give transcribers 

clear guide on how to place offset. Transcribers were only 

asked to place offset at the time they think the voice ends. If 

the voice does not end clearly, the offset should be placed at 

the onset of next note. 

 

Beside these rules, we also provided a “baseline AST 

program” to accelerate the annotation process. This program first 

uses Spleeter [11] to obtain vocal part of a song, and then uses the 

CNN onset detector proposed in [12] to determine onsets, and use 

the pitch tracking algorithm proposed in [13] to obtain pitch of 

each frame. The final “score pitch” is the rounded average of 

frames’ pitch within that note. The offset is determined using an 

energy-based voiced detection algorithm implemented by [13]. 

 

3.3. Concerns About the Dataset 

 

With the above annotation procedure, 162,438 notes from 500 

songs are created. However, several concerns still exist, which are 

listed below together with our methods to reduce them. 

⚫ Score pitch: The first concern is that transcribers do not have 

formal music training, which might have led to some 

transcription error on score pitch. This was alleviated by 

letting transcribers to freely select songs he/she is 

comfortable with. Moreover, by playback the song and the 

labeled notes simultaneously, most people can readily 

identify the pitch error (if any). 

⚫ Initial label bias: The second concern is that we provided a 

baseline AST program for transcribers, which might have led 

to some bias in favor of the baseline AST program. To 

alleviate this problem, we performed an extra post-processing 

step to adjust onsets automatically, as described in Section 

3.4. This could reduce some of the initial label bias. 

⚫ Onset criterion: The third concern is that we did not define 

the rule of labeling onset strictly, which may cause some 

ambiguity. In particular, if an onset is labeled at the start of 

an unvoiced segment, but an AST program predicts it at the 

start of voiced segment, the prediction may be considered 

wrong if the deviation exceeds the given tolerance. To make 

sure this is not a big concern, we conducted two experiments. 

First, we computed the average duration of unvoiced segment 

in MIR-1k dataset [5], a dataset that has similar properties 

with MIR-ST500, in Section 3.5. And then we trained an 

AST model using MIR-ST500 dataset in Section 3.6, and 

then evaluated its performance in Section 4. The results 

provide some indirect evidence, showing that although the 

onset annotation of MIR-ST500 dataset may be a little bit 

inconsistent, it is still acceptable for AST modeling. 

 

3.4. Post-processing on Onset Labels 

 

After the labeling process, we performed an extra post-processing 

step on onsets. We focus especially on those notes that have 

unvoiced phoneme at the beginning, since onsets of these notes 

are much difficult to place. We have defined criterion to label 

these onsets, i.e., they should be placed within the leading 

unvoiced segment. In this step, we adjusted these onsets to force  

 
Figure 1. The cumulative distribution of unvoiced segments’ 

duration in MIR-1k dataset. 

 

them to follow the criterion. We first trained an “unvoiced frame 

classifier” to identify unvoiced segments in MIR-ST500 dataset, 

and then moved onsets to their nearest unvoiced segment (if any).  

We used MIR-1k dataset [5] to train the classifier. MIR-1k 

dataset consists of 1000 song clips (about 133min) in Chinese. It 

provides the label of “unvoiced frame”, so we can train our model 

on it. Since most songs in MIR-ST500 are also sang in Chinese, 

the gap between training data and test data is relatively small. 

The model is a neural network that takes Mel-Frequency 

Cepstral Coefficients (MFCC), MFCC delta and delta-delta as 

input. The model itself consists of 4 linear layers with ReLU 

activation function. A sigmoid function is applied to determine the 

final unvoiced probability. After training the model, we predicted 

each frame in MIR-ST500 by using Viterbi algorithm [14], with 

transition probability also obtained from MIR-1k. 

Finally, we computed the shortest time difference between 

the onset and any unvoiced segment (predicted by the model). If 

for an onset label, the time difference is not zero and is smaller 

than a threshold, then it is considered as with “small error”, and 

will be moved to the boundary of its nearest unvoiced segment. 

The reason to set a threshold is simply because we do not 

want to adjust those onsets of notes that do not have a leading 

unvoiced phoneme. These onsets are usually far away from any 

unvoiced segments, so we can set a threshold to avoid moving 

them erroneously. Note that such a threshold should be large 

enough to cover most of the small errors committed by 

transcribers, but also small enough to avoid erroneous move. Here, 

we set the threshold to 0.05 second, or 50ms, empirically. 

 

3.5. Duration of Unvoiced Segments 

 

In this section, we calculate the distribution of unvoiced segments 

duration in MIR-1k dataset. This helps us to find out the level of 

ambiguity introduced by the onset labeling criteria. 

In total, there are 5927 unvoiced segments in MIR-1k, and 

the average duration of them is 99.8ms (4.99 frames). The 

cumulative distribution is shown in Figure 1. About 70% unvoiced 

segments have duration shorter than 100ms. This indicates that 

even if we give transcribers more tolerance, the “ambiguity” does 

not exceed 100ms in most unvoiced segments. However, we still 

do not know if the onset accuracy of the dataset is acceptable 

when onset tolerance is set to ±50ms (which is frequently adopted 

in previous works [1, 8, 10, 15]). This should be verified by 

experiments in Section 4. 

 

3.6. Singing Transcription Model Trained on MIR-ST500 
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Dataset Size Year Vocal only Audio Method Pitch criterion 

RWC (popular) 
100 songs1 

>30000 notes 

2002 (music) 

2006 (label) 
No 

Pop songs 

Copyright-cleared 
Not clear Score pitch 

TONAS 
72 songs 

2983 notes 
2013 Yes Flamenco songs 

Labeled by 

experts 

Floating-point  

note pitch 

ISMIR2014 
38 songs 

2153 notes 
2014 Yes 

Pop songs and 

children songs 

Labeled by 

experts 

Floating-point  

note pitch 

DALI 
5358 songs2 

>1.6M notes 
2018 No 

Pop songs 

From Youtube 

Automatic 

Alignment 

Score pitch 

(with many errors) 

MIR-ST500 
500 songs 

>160000 notes 
2021 No 

Pop songs 

From Youtube 

Labeled by 

non-experts 
Score pitch 

Table 1.  The comparison between MIR-ST500 and previous datasets. 

                                                 
1 This dataset contains 100 songs, but 6 of them (No. 3, 5, 8, 10, 23, and 66) have multiple singers, so we only use the remaining 94 songs 

to evaluate our model. 
2 This dataset originally contains 5358 songs, but we can only download 4726 of them from Youtube using the provided script (in July 

2020), so we only use these 4726 songs to evaluate our model. 

 

 
Figure 2. The pipeline of our sample AST model. 

 

In this section, we describe a pipeline of using MIR-ST500 to 

train an AST model. We will then evaluate this model on various 

datasets (in Section 4.3 and 4.4), in order to demonstrate the 

feasibility of the dataset. The performance of our model can also 

serve as the baseline of MIR-ST500 dataset. 

Figure 2 shows the pipeline of our model. Our AST program 

is based on EfficientNet-b0 [16], which is a CNN model that 

reached state-of-the-art performance on ImageNet-1k [17], while 

the model size is significantly lower than other models with 

similar performance. To prepare the training data, we first 

resample the audio to 44100Hz (if needed), and then use Spleeter 

[11] to extract vocal part. Then we compute constant-Q transform 

(CQT) of the audio with a hop length of 1024 sample points 

(about 23ms) and 24 bins per octave (from C2 to C9) to obtain a 

168-dimensional vector for each frame. The network input is the 

concatenation of the vectors from ±5 frames (11 frames in total, 

corresponding to the context of about 255ms), which can be 

viewed as a 1-channel “image” of 168x11 resolution. 

The output of the network is an 18-dimensional vector. The 

first two outputs are the “onset probability” and “silence 

probability”. The 3rd to 14th outputs are the probability of each 

“pitch name”, from C to B, while the remaining 4 outputs are the 

probability of each “octave”, from 2 to 5. By applying onset 

threshold and silence threshold, we can segment audio into notes, 

each contains several frames. The most commonly appeared pitch 

is considered as the score pitch of a note. The onset threshold is 

chosen to maximizes COn f1-score of the training set. The silence 

threshold is set to 0.5 empirically. 

 

4. EXPERIMENTS 

 

 
Figure 3. The precision-recall curve of our unvoiced frame 

detector on MIR-1k test set. 

 
Figure 4. The cumulative count of “the distance in time between 

onset and the closest unvoiced segment” on MIR-ST500 dataset. 

 

The comparison between MIR-ST500 dataset and others, 

including ISMIR2014 dataset [1], TONAS [2], “RWC database: 

Popular music” [3, 18] and DALI dataset [4], is shown in table 1. 

 

4.1. Results of Unvoiced Frame Classifier 

 

We split MIR-1k into a 900-clip training set and a 100-clip test set, 

and then trained our model for 50K steps with a batch size of 50. 

Figure 3 shows the precision-recall curve on the test set, which is 

obtained by adding the unvoiced log probability of each frame by 

the same amount of prior p. We change the value of p to make the 

precision equals to recall (the resulted R-precision is 86.96%). 

This model (and the prior p) is then used to test MIR-ST500 to see 

if onsets are placed at unvoiced segments properly. 

By using this model, we identified 61,032 unvoiced segments, 

while the dataset itself contains 162,438 labeled onsets. Figure 4 

shows the cumulative count of “the distance between the onset 
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Dataset ISMIR2014 
MIR-ST500 

(test) 

MIR-ST500 

(train) 

COnPOff 49.55% 45.78% 60.00% 

COnP 63.63% 66.63% 74.39% 

COn 79.16% 75.44% 78.76% 

Dataset TONAS RWC DALI 

COnPOff 9.57% 6.11% 3.61% 

COnP 19.65% 10.32% 9.80% 

COn 42.41% 69.29% 44.35% 

Table 2. F1-score on various datasets with 50ms onset tolerance. 

 

Dataset DALI 
MIR-ST500 

(test) 
RWC ISMIR2014 

COn(50ms)  44.35% 75.44% 69.29% 79.16% 

COn(100ms) 66.87% 84.82% 80.01% 92.57% 

Table 3. F1-score on datasets with different onset tolerance. 

 

and the closest unvoiced segment”. 31,911 of the labeled onsets 

are placed within an unvoiced segment. 15,340 of them satisfy the 

heuristics discussed in Section 3.4, namely, “the distance is less 

than 50ms”. These 15,340 onsets were then adjusted automatically, 

which account for 9.4% of the total onsets. In comparison with the 

total number of unvoiced segments (61,032), this may seem quite 

high (25.1%). However, such a mistake (most of them are within 

20ms, according to figure 4) could also be committed by the 

unvoiced detector itself, so we think this is still acceptable. 

 

4.2. Evaluation Metrics of Singing Transcription 

 

We use the evaluation metrics proposed in [1], including COn 

(Correct Onset), COnP (Correct Onset and Pitch) and COnPOff 

(Correct Onset, Pitch and Offset), to evaluate our AST model. If 

the onset/pitch/offset difference between two notes are within a 

certain threshold, the onset/pitch/offset is “correct”. By comparing 

groundtruth and transcribed notes, we can find out the number of 

notes that satisfy COn, COnP and COnPOff, and further compute 

f1-score of each metric. 

In our experiments, the pitch threshold is set to 50 cents, 

while the offset threshold is set to max(50ms, 0.2*note duration). 

These thresholds are used frequently in previous papers [8, 10, 15]. 

 

4.3. Results of the Singing Transcription Model  

 

To build the sample AST model, we split MIR-ST500 into a 400-

song training set and a 100-song test set. After training for 300K 

steps with a batch size of 50, the performance on various datasets 

are showed in table 2. Several findings are listed next. 

Pitch: Our model scores high COnP f1-score on MIR-ST500 

test set and ISMIR2014 dataset, but does not score high on RWC 

and DALI. By examining RWC and DALI, we found that the 

pitch annotations of RWC and DALI are not good enough since 

some of the pitch annotations are one or two octaves higher than 

the vocal part. Also, our model scores higher on MIR-ST500 test 

set than ISMIR2014, which may be due to the fact that the pitch 

labeling criterion of ISMIR2014 dataset is different from MIR-

ST500, as we described in Table 1. 

Onset: For COn, our model performs well on MIR-ST500 

test set, ISMIR2014, and RWC-MDB-P, but not so well on DALI 

and TONAS. For TONAS, this is due to the low recall rate, since 

Method\Metrics COnPOff COnP COn 

EfficientNet-b0 45.78% 66.63% 75.44% 

Baseline 24.81% 39.24% 61.18% 

Table 4. Comparison of f1-scores on MIR-ST500 test set.  

 

Method\Metrics COnPOff COnP COn 

Tony [15] 50% 68% 73% 

Fu & Su [10] 59.4% NA 78.6% 

EfficientNet-b0 49.55% 63.63% 79.16% 

Table 5. Comparison of f1-score with previous approaches on 

ISMIR2014 dataset. The “NA” cell means this metric is not 

reported in the paper. 

 

it has 2983 notes in total, but the model only outputs 1386. The 

reason may be due to the annotating criteria of the dataset itself. 

The labelers of TONAS tend to split notes when there is vibrato or 

portamento. For DALI, both precision and recall are low, which is 

likely due to inaccuracy of labeling. 

Onset tolerance: Table 3 shows the COn f1-score with onset 

tolerance of 50ms and 100ms of our model. The COn difference 

between DALI and MIR-ST500 test set is 31% when onset 

tolerance is set to 50ms, but if onset tolerance is set to 100ms, the 

difference shrinks to 18%. This may indicate that the onset 

annotations of DALI have larger “error range”. In contrast, we can 

also conclude that the onset error range of MIR-ST500 is lower, 

since the difference between 50ms (75.44%) and 100ms (84.82%) 

is only 9.38%, which means the ±50ms range is enough to cover 

most of the onsets. 

 

4.4. Model Comparison 

 

In this section, we compare our (EfficientNet-b0) model with 

some other models, including the “baseline” model used to help 

transcribers label MIR-ST500.  We set the onset tolerance to 50ms 

here. Table 4 shows that EfficientNet-b0 model does outperform 

the baseline model on MIR-ST500 test set. This indicates that 

MIR-ST500 does not give too much advantage to the baseline 

AST program, since a model trained on MIR-ST500 training set 

can easily outperform baseline model by at least 14% on every 

metric. Table 5 shows that our model trained on MIR-ST500 is 

competitive with other state-of-the-art models, despite the 

different pitch labeling criterion between training set (MIR-ST500) 

and test set (ISMIR2014), which gives disadvantage to our model. 

This also proves that although there are some concerns about 

MIR-ST500 (as mentioned in Section 3.3), it is still a useful large-

scale dataset that can be utilized to create a feasible AST model. 

 

5. CONCLUSIONS 

 

This paper proposes a large-scale dataset, MIR-ST500, and 

performs several automatic adjustments to reduce the error of 

labels. We also trained an AST model on MIR-ST500 dataset, and 

evaluated its performance on other datasets to demonstrate the 

feasibility of the dataset. The result also shows that with the help 

of a baseline program, verification process, post-processing and 

the use of converting annotation to MIDI, even non-experts can 

still create useful MIR-related datasets. 

To further improve the reliability, as a future work, the 

validation of the test set (or a subset of this 100-recording test set) 

by experts can be conducted to make it more accurate. 
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