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ABSTRACT
Over the last decades, various conceptually different approaches
for fundamental frequency (F0) estimation in monophonic audio
recordings have been developed. The algorithms’ performances
vary depending on the acoustical and musical properties of the
input audio signal. A common strategy to assess the reliability
(correctness) of an estimated F0-trajectory is to evaluate against
an annotated reference. However, such annotations may not be
available for a particular audio collection and are typically labor-
intensive to generate. In this work, we consider an approach to
automatically assess the reliability of F0-trajectories estimated from
monophonic singing voice recordings. As main contribution, we
propose three reliability indicators that are based on the outputs of
multiple algorithms. Besides providing a mathematical description
of the indicators, we analyze the indicators’ behavior using a set of
annotated vocal F0-trajectories. Furthermore, we show the potential
of the proposed indicators for exploring unlabeled audio collections.

Index Terms— singing voice, F0, reliability assessment

1. INTRODUCTION

Fundamental frequency (F0) estimates often serve as mid-level rep-
resentation [1] in music information retrieval (MIR) tasks such as
automatic music transcription [2] and performance analysis [3, 4].
There exist a variety of approaches for monophonic F0-estimation,
ranging from model-based methods [5–7] to more recent deep-
learning-based methods [8, 9]. A monophonic F0-estimation algo-
rithm typically outputs one F0-value per time instance together with
a confidence value that indicates the algorithm’s certainty whether
the sound source is active or not (sometimes referred to as “voic-
ing”). However, high confidence does not necessarily imply high
reliability (correctness) of an estimated F0. For example, typical
estimation errors are confusions of the F0 with higher or lower
harmonics (in particular octaves). The performance of a specific F0-
estimation algorithm depends on the audio signal’s acoustic prop-
erties (e.g., microphone characteristics, recording conditions) and
musical properties (e.g., instrumentation, singing/playing styles).

In order to assess the accuracy of F0-estimates, a commonly
used strategy is to evaluate an algorithm’s output against a man-
ually annotated reference, e.g., using the standard metrics defined
in [10,11] or a recently proposed variant [12]. However, manual F0-
annotations are labor-intensive to generate and sometimes not avail-
able. This motivates the need for automatic approaches that deliver
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cues on the reliability of F0-estimates. In prior work [13], the au-
thors have suggested a deep-learning-based approach for reliability
assessment of F0-estimates from speech recordings. The approach
requires access to the algorithms’ internal computations, as well as
algorithm-specific adaptation and training.

In this work, we have developed a more generic approach that is
independent of the algorithms’ working principle and available im-
plementations. Conceptually similar to the studies in [14, 15], our
approach makes use of F0- and confidence outputs of multiple algo-
rithms. As one main contribution, we introduce three reliability in-
dicators (denoted as I1, I2, and I3) that measure the reliability of an
F0-estimate with respect to three different criteria. I1 measures the
agreement of the algorithms’ F0-estimates, I2 measures the over-
all confidence of the algorithms, and I3 measures the stability of
the estimated F0-trajectories in a temporal context. The latter crite-
rion is based on the observation that some algorithms tend to output
random-like values in parts where no singing voice is active. Fur-
thermore, in parts where F0-estimation is ambiguous or problematic
(e.g., for consonants), estimated F0-trajectories often exhibit abrupt
jumps. As a test scenario for our indicators, we consider a collection
of multitrack field recordings of polyphonic Georgian vocal music
(GVM) [16, 17]. The GVM collection comprises 216 performances
recorded with multiple close-up microphones, including headset and
throat microphones attached to individual singers [18, 19]. Besides
being musically relevant, the collection is suitable for testing our in-
dicators due to its diversity of singers, singing skills, and acoustic
conditions.

In the following, we provide mathematical definitions of the re-
liability indicators in Section 2 and evaluate the indicators’ perfor-
mance on a set of manual F0-annotations extracted from selected
songs of the GVM collection in Section 3. We indicate the potential
of the proposed indicators for exploring unlabeled audio collections
in Section 4 and conclude our results in Section 5.

2. RELIABILITY INDICATORS

In Section 2.1, we formalize the notion for our scenario. Then, we
summarize the algorithms and annotations used in our investigations
in Section 2.2. Subsequently, we introduce our three reliability indi-
cators that measure F0-agreement (Section 2.3), overall confidence
(Section 2.4), and F0-trajectory stability (Section 2.5).

2.1. Formalization

In our experiments, we consider several F0-estimation algorithms
applied to one audio recording. Let M be the number of algorithms.
In order to account for the logarithmic nature of pitch perception,
we convert the estimated F0-values (given in Hertz) into the log-
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Fig. 1: Estimated F0-trajectories, confidences, annotations, and reli-
ability indicators for the middle voice in the song “Kriste Aghsdga”.

frequency domain by defining

Fcents (ω) := 1200 · log2

(
ω

ωref

)
. (1)

Fcents measures the distance (given in cents) between frequency ω
and a reference frequencyωref . In the following, we setωref = 110 Hz.
Let us assume, a given F0-estimation algorithm outputs a frequency
value as well as a confidence value (a value between 0 and 1) for
each discrete time index n ∈ [1 : N ]. Then, let T : [1 : N ] → R
be the resulting frequency trajectory and C : [1 : N ] → [0, 1] the
corresponding confidence trajectory. For our M algorithms, let

T := {T1, ..., TM} (2)

and
C := {C1, ..., CM} (3)

be the corresponding sets of trajectories. Let Tm be the frequency
trajectory and Cm the confidence trajectory for the mth algorithm,
m ∈ [1 : M ].

Furthermore, let A : [1 : N ]→ R ∪ {∗} be an F0-annotation,
with A(n) = ∗ where the frequency value is unspecified. We de-
note the set of all time frames where the annotation is active as
µ(A) := {n ∈ [1 : N ] : A(n) 6= ∗}.

2.2. Algorithms and Annotations

In our investigations, we consider the algorithms YIN [5], Melo-
dia [20], and CREPE [8] (M = 3). While YIN and CREPE are de-
signed for monophonic F0-estimation, Melodia was originally de-
veloped for the task of predominant melody estimation. Note that

the selection of algorithms in this work is exemplary and our mea-
sures are not restricted to this specific set of algorithms. For extract-
ing F0- and confidence trajectories, we use the publicly available
YIN and Melodia Vamp plugins1 together with the open-source tool
Sonic Annotator [21], as well as the CREPE Python package2. All
algorithms are applied with default parameter settings. For YIN and
CREPE, we use the continuous confidence output of the implementa-
tions, whereas for Melodia, we derive binary confidence trajectories
from the voice activity decision made by the algorithms.

Additionally, we consider two types of manual annotations.
AVA assumes annotated F0-values in cents for parts where the
singing voice is active (VA) and the symbol ‘∗’ elsewhere. Simi-
larly, ASR assumes annotated F0-values in cents for roughly stable
regions (SR) of the F0-trajectory and the symbol ‘∗’ elsewhere.
Note that typically, the F0-values in ASR form a subset of the
F0-values in AVA. We manually generate ASR using the publicly
available tool Tony [22], which is based on the algorithm PYIN [7].
Furthermore, we generate AVA by restricting automatically ex-
tracted PYIN trajectories (also obtained using a Vamp plugin) to
manually annotated regions where the singing voice is active using
Sonic Visualiser [23]. In order to account for different hop sizes of
the algorithms and annotations, we resample all F0-trajectories, an-
notations, and confidences to a time grid with a resolution of 10 ms.
Furthermore, we quantize the F0-trajectories and annotations to a
frequency resolution of 10 cents.

As a running example in this section, we consider a recording
of the three-voice song “Kriste Aghsdga”, which is part of a pub-
licly accessible subset3 of the GVM collection. The three perform-
ing singers frequently use pitch slides at the beginning and end of
sung notes, which is a characteristic stylistic element in traditional
Georgian vocal music. Figure 1 shows a superposition of the result-
ing F0-trajectories extracted from the throat microphone recording
of the middle voice for a short excerpt from our running example.
Furthermore, the color-coded activities µ(AVA) and µ(ASR) are vi-
sualized.

Given the sets T and C, we now introduce three reliability indi-
cators I1, I2, and I3. The frame-wise arithmetic mean of the three
indicators is denoted as IMean.

2.3. F0-Agreement

For measuring the agreement of the F0-trajectories, we consider
P =

(
M
2

)
trajectory pairs (Ti, Tj) ∈ T × T , with i < j. For each

pair, we compute the difference between the trajectories by

∆p(n) =

{
1, for |Ti(n)− Tj(n)| ≤ εI ,
0, otherwise,

(4)

with pair-index p ∈ [1 : P ] and εI being a threshold in cents which
defines the strictness of the measure. In our experiments, we set
εI = 10 cents. Compared to a 50 cents tolerance, which is typi-
cally used in standard evaluation metrics for evaluating pitch accu-
racy [11, 12], the chosen threshold is rather strict. Considering the
10 cents quantization of our trajectories, the threshold accounts for
possible rounding artifacts caused by quantization. For practical rea-
sons, we work with a fixed εI in our experiments and leave further
investigations on the role of εI to future research. Our first reliabil-
ity indicator is defined as the arithmetic mean of the differences over

1https://vamp-plugins.org/
2https://github.com/marl/crepe
3https://www.audiolabs-erlangen.de/resources/

MIR/2018-ISMIR-LBD-ThroatMics
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all pairs:

I1(n) :=

∑P
p=1 ∆p(n)

P
. (5)

Only if the F0-estimates of all algorithm pairs agree, I1(n) = 1, as
shown in our running example in Figure 1. In parts where the F0-
estimates strongly deviate (e.g., at 2.5 sec) one obtains I1(n) = 0.
In the part between 2.5–4 sec, there are some octave jumps by YIN
and CREPE, which cause the agreement to decrease.

2.4. Overall Confidence

Our second reliability indicator combines the confidence outputs of
the algorithms and is defined as the arithmetic mean of the confi-
dences over all algorithms:

I2(n) :=

∑M
m=1 Cm(n)

M
. (6)

Note that in order for I2 to deliver meaningful indications, all tra-
jectories are required to have values in the same value range, ideally
making use of the entire [0, 1] interval. If this requirement is not ful-
filled, we use suitable normalization techniques or a binarization of
the confidence using the algorithm’s voice activity decision to bal-
ance out the confidence value distributions. In particular, we use
binarized confidence trajectories for Melodia. In Figure 1, I2 indi-
cates high overall confidence in most of the parts where the voice is
active, thus showing high agreement with µ(AVA).

2.5. F0-Trajectory Stability

Our third indicator I3 measures reliability with respect to the local
stability of the estimated F0-trajectories. A trajectory region is con-
sidered stable if it exhibits a roughly horizontal structure (up to some
tolerance). In order to detect such stable regions in an F0-trajectory,
we make use of an automatic approach based on morphological fil-
ters proposed in [24]. In a first step, we compute two filtered ver-
sions of the trajectory, one by using a min-filter (erosion) and one by
using a max-filter (dilation) with filter lengths L ∈ N. L controls
the smoothness of the filtered trajectories and affects the sensitiv-
ity of the stable region detection to sudden jumps in the trajectories.
For practical reasons, we fix L = 15 (150 ms) in our experiments.
The value roughly corresponds to the filter length determined in a
previous study on Georgian vocal music [24] and might need to be
adapted to other application scenarios. We leave further investiga-
tions on the role of L to future work. In a second step, we compute
the frame-wise absolute difference between the max- and the min-
filtered trajectory (also referred to as envelope width). All regions
where the envelope width is lower than or equal to a certain thresh-
old τ given in cents are considered stable. The algorithm outputs an
indicator S : [1 : N ] → {0, 1}, where S(n) = 1 in stable regions
and S(n) = 0 in unstable regions. In order to account for trajectory
fluctuations of different extent, we consider a set of envelope-width
thresholds W = {20, 40, 60, 80, 100}, with 20 cents being a very
strict threshold allowing for almost no trajectory fluctuations, and
100 cents being a generous threshold allowing for fluctuations of up
to a semitone (e.g., vibrato).

Let Sm,τ be the stability indicator for the mth algorithm
m ∈ [1 : M ] and threshold τ ∈ W . Then, I3 is defined as the
arithmetic mean as follows:

I3(n) :=

∑M
m=1

∑
τ∈W Sm,τ (n)

M · |W| , (7)

for n ∈ [1 : N ]. As one can see in Figure 1, I3 indicates high
reliability in regions where all estimated F0-trajectories are roughly
stable and therefore strongly coincides with µ(ASR).

3. EVALUATION USING LABELED DATA

In order to study the behavior of our indicators, we apply different
thresholds κ ∈ [0, 1] on our reliability indicators I : [1 : N ]→ [0, 1].
The resulting (enduring) subsets of our discrete time axis are given
as Eκ = {n ∈ [1 : N ] : I(n) ≥ κ}. The higher κ, the smaller is the
obtained subset. For a given subset Eκ, we evaluate the agreement
with an annotated voice activity µ(A) using the standard retrieval
metrics precision (P), recall (R), and F-measure (F) defined as

P :=
|Eκ ∩ µ(A)|
|Eκ|

, R :=
|Eκ ∩ µ(A)|
|µ(A)| , F :=

2 · P · R
P + R

. (8)

Furthermore, we set P := 0 for |Eκ| = 0, R := 0 for |µ(A)| = 0,
and F := 0 for P+R = 0. The standard definition of the F-measure
equally weights precision and recall. The weighting may have to be
adapted depending on the application scenario. As a further anal-
ysis step, we evaluate the F0-accuracy of estimated F0-trajectories
within the subsets with respect to a reference annotation. Given an
F0-trajectory T restricted to the given subset Eκ and an annotation
A, we define the F0-accuracy φ as

φ :=
|Eκ ∩ µ(A) ∩ {n ∈ [1 : N ] : |T (n)−A(n)| ≤ εe}|

|Eκ ∩ µ(A)| , (9)

with εe being the evaluation tolerance parameter in cents. In our
experiments, we use a strict value of εe = 10 cents, to basically
allow for quantization errors.

In our evaluation, we expand the scenario described in Sec-
tion 2.2 to all five songs of the GVM subset. In the following, we
consider the three algorithms YIN, CREPE, and Melodia applied on
the throat microphone recordings of the middle voices. Furthermore,
we manually generated the annotationsAVA andASR for these mid-
dle voice tracks (we crosschecked the annotations in spot-checks).
The F-measure and F0-accuracy with respect to AVA are denoted as
FVA and φVA, whereas the evaluation measures with respect toASR

are denoted as FSR and φSR, respectively.
Figure 2 shows the evaluation metrics for all algorithms aver-

aged over all five recordings for each reliability indicator and algo-
rithm with respect to the threshold κ. For almost all algorithms and
reliability indicators, we observe an increasing F0-accuracy along
with an increasing κ. The sudden drop in Melodia’s φ curves for
I2 occurs due to a high number of octave errors in regions with
high confidence in one of the five recordings. For CREPE, the F0-
accuracy is close to 1 for all values of κ, which indicates that the
algorithm performs well on our annotated data. Note that the F-
measure curves for a specific reliability indicator are identical for all
algorithms, since the F-measure only depends on the chosen indi-
cator I, threshold κ, and annotation A. For high values of κ, only
few F0-values remain, which causes the voice activity F-measures
to decrease.

In conclusion, our indicators give cues on the reliability of F0-
estimates at a given time instance in the audio signal. However, they
are less suitable to assess the accuracy of a specific algorithm’s esti-
mate, since high reliability does not guarantee correct estimates (e.g.,
in the case of all algorithms outputting wrong estimates). The choice
of a suitable threshold κ depends on the algorithms’ individual per-
formances, the chosen reliability indicator, and the target annotation
or application.
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Fig. 2: F-measure and F0-accuracy for all indicators and algorithms with respect to reliability threshold κ averaged over five recordings.

Fig. 3: Survival rates for LRX and HDS microphones with respect to threshold κ averaged over 249 tracks.

4. EXPLORING UNLABELED AUDIO COLLECTIONS

In this section, we want to demonstrate the potential of our reliabil-
ity indicators for exploring unlabeled datasets. When approaching
new audio collections, one may want to have a compact overview on
how reliably automatic F0-extraction algorithms perform under the
acoustical and musical conditions provided by the data. In the case
of the GVM collection, we find two different acoustic conditions due
to the different types of close-up microphones used. Throat or lar-
ynx microphones (referred to as LRX microphones in the following)
capture the vibrations of the throat directly from the skin and are
therefore less sensitive to cross-talk of neighboring singers [18, 19].
Headset (HDS) microphones pick up the human voice placed in front
of (or next to) the mouth and are prone to bleeding of other voices.
The presence of noise or other interfering sounds typically compli-
cates the task of F0-estimation.

In the following, we consider a large subset of the GVM col-
lection consisting of 85 polyphonic songs. More specifically, the
subset includes 249 tracks (ca. 9 hours duration) for each micro-
phone type. In order to explore the reliabilities measured by our
indicators for the two different microphone types, we introduce a
measure referred to as survival rate and denoted as ρ. The measure
indicates the portion of remaining trajectory values after threshold-
ing I : [1 : N ]→ [0, 1] with κ ∈ [0, 1] and is defined as follows:

ρ :=
|Eκ|
N

. (10)

The survival rates for LRX and HDS microphone signals are denoted
as ρLRX and ρHDS, respectively. In this experiment, we expand the
setup described in Section 2.2 by adding PYIN to our set of algo-

rithms. Figure 3 shows the two survival rates averaged over all 249
tracks with respect to the threshold κ. The graphs show that for high
values of κ, ρLRX is larger than ρHDS, whereas for low values of κ,
ρHDS is larger than ρLRX. This suggests a slightly better discrim-
inability between reliable and unreliable frames for LRX signals.

Rather than advocating a specific indicator or a specific thresh-
old κ, we see the proposed reliability indicators as a toolkit for mea-
suring reliability of automatically extracted F0-trajectories with re-
spect to F0-agreement, overall confidence, and F0-trajectory stabil-
ity. Depending on the application, one may consider different indi-
cators or suitably weighted combinations of them. Furthermore, one
may adapt the selection of F0-extraction algorithms and fine-tune
the individual indicators’ parameters (εI , L, and τ ) to account for
the specific acoustical and musical properties of the audio material.

5. CONCLUSIONS

In this paper, we presented three indicators for measuring the reli-
ability of F0-trajectories extracted from singing voice recordings.
The indicators are based on the outputs of multiple algorithms and
measure reliability with respect to F0-agreement, overall confi-
dence, and F0-trajectory stability. As one of our main contributions,
we introduced the reliability indicators in a mathematically rigor-
ous way. Furthermore, we evaluated the behavior of the indicators
on a set of manually annotated vocal F0-trajectories. While our
indicators cannot replace manual F0-annotations, they can be used
as an efficient tool to obtain cues on the reliability of automati-
cally extracted F0-trajectories from unlabeled audio collections.
Future work will be concerned with using and further exploring our
indicators for tonal analysis of Georgian vocal music.
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Emilia Gómez, Sebastian Streich, and Beesuan Ong, “Melody
transcription from music audio: Approaches and evaluation,”
IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 15, no. 4, pp. 1247–1256, 2007.
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