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- Introduction

* State-of-the-art in lyrics alignment applies forced alignment at
a single pass with a beam size of 3000 *.

* This could be memory exhaustive for a recording of few
minutes long.

(*) Gupta, Chitralekha, Emre Yilmaz, and Haizhou Li. "Automatic Lyrics Alignment and
Transcription in Polyphonic Music: Does Background Music Help?." IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020
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Vocal Segmentation :

1) Vocal Source Separation

2) Log-energy based Vocal Activity Detection (VAD)
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- Results

Evaluation Set:

- Jamendolyrics dataset

( https://github.com/f90/jamendolyrics )

- 20 songs, not mainstream, open-source
- Polyphonic music - various genre including pop, hiphop, reggae, rock,
metal

- English


https://github.com/f90/jamendolyrics

- Results

Trained on

Models
- DE1 - vocals separated with ‘demucs' _

| DAMP-Sing! 300x30x2
- DEZ2 - vocals separated with ‘spleeter’
- SD1 - E-2-E alignment polyphonic * ]‘ Private
- SD2 - E-2-E alignment polyphonic separated with ‘U-net' * Dataset
- GC1 - TDNN-f polyphonic **
- GC2 - TDNN-f vocals separated with ‘U-net’ ** DALI vi1.0
- VA - E-2-E alignment separated with ‘spleeter’ ***

(*) Stoller, Daniel, Simon Durand, and Sebastian Ewert. "End-to-End Lyrics Alignment Using An
Audio-to-Character Recognition Model." (2019).

(**) Gupta, Chitralekha, Emre Yilmaz, and Haizhou Li. "Automatic Lyrics Alignment and
Transcription in Polyphonic Music: Does Background Music Help?." IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020

(***) Vaglio, Andrea, et al. "Multilingual lyrics-to-audio alignment."”
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Audio-to-Lyrics Alignment

Evaluation Metrics
- Average absolute error/deviation (mean, median) *

- Percentage of correct estimates (according to a tolerance window go 0.3 sec)**

(*) Mesaros, Annamaria, and Tuomas Virtanen. "Automatic alignment of music audio and
lyrics." Proceedings of the 11th Int. Conference on Digital Audio Effects (DAFx-08). 2008.

(**) Mauch, Matthias, Hiromasa Fujihara, and Masataka Goto. "Integrating additional chord
information into HMM-based lyrics-to-audio alignment." IEEE Transactions on Audio, Speech, and
Language Processing (2011):
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Audio-to-Lyrics Alignment

Results

Mean AE | Median AE | PCS
SD1 [7] 0.82 0.10 | 0.85
SD2 [7] 0.39 0.10 | 0.87
VA [5] 0.37 N/A | 0.92
GCI1 [8] 0.22 0.05 | 0.94
DEI 0.31 0.05 | 0.93
DE2 0.38 0.05 | 0.90

Table 1: Lyrics alignment results on the Jamendo dataset
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Audio-to-Lyrics Alignment

Memory Consumption
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Fig. 3: Memory usage on RAM in megabytes (MB)

GC1 DE{1,2}
Mean (Std. %) | 13,740 (8.8%) 343 (3.%)
Max 16,715 748

Table 2: Statistics on memory usage in MB



Automatic Lyrics Transcription

Results
WER CLR

Mauch JTamendo | Mauch Jamendo
SDI1 [7] 70.00 77.80 | 18.90 19.20
GCl1 [8] 44.02 59.57 | N/A N/A
G2 [8] 7885 TIRI | N/A N/A
DEI - VAR Hbl.YL 62.55 | 44.15 4702
DEI - segmented 5044 5547 | 38.65 42,11
NDFE2 - VAR §57.56 51.76 | 41.52 37.26
DE2 - segmented  19.92 4452 | 3841 3290

Table 3: Lyrics transcription results
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Conclusion

Competitive results with the s.o.t.a

A tool for automatically generating sentence-level annotations for lyrics transcription.
Possibility for lyrics alignment in zero-resource languages.

Importance of vocal source separation.

Reported best transcription results on a public benchmark evaluation dataset.

Red Al vs. Green Al ?
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