

Emir Demirel

Topic: Automatic Lyrics Transcription and Alignment Supervisors : Simon Dixon, Sven Ahlback

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 765068

PART 2 :

Low Resource Audio-to-Lyrics Alignment

Contents

- Introduction
- Method
- Results
- Demo
- Conclusion

Automatic Speech Recognition

$$\widehat{\mathbf{w}} = \operatorname*{argmax}_{\mathbf{w}} P(\mathbf{w}) \max_{\mathbf{Q} \in Q_w} P(\mathbf{X} | \mathbf{Q}) P(\mathbf{Q} | \mathbf{w}),$$

1 Architecture of a HMM-based Recogniser.

Automatic Speech Recognition

- State-of-the-art in lyrics alignment applies forced alignment at a single pass with a beam size of 3000 *.
- This could be memory exhaustive for a recording of few minutes long.

(*) Gupta, Chitralekha, Emre Yılmaz, and Haizhou Li. "Automatic Lyrics Alignment and Transcription in Polyphonic Music: Does Background Music Help?." *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2020

Fig. 1: Pipeline of our lyrics transcription and alignment system

Vocal Segmentation :

- 1) Vocal Source Separation
- 2) Log-energy based Vocal Activity Detection (VAD)

Fig. 1: Pipeline of our lyrics transcription and alignment system

1 Architecture of a HMM-based Recogniser.

Fig. 1: Pipeline of our lyrics transcription and alignment system

- Using the input song lyrics only

Fig. 1: Pipeline of our lyrics transcription and alignment system

- Use a G2P model for out-of-vocabulary words

Fig. 1: Pipeline of our lyrics transcription and alignment system

1 Architecture of a HMM-based Recogniser.

Acoustic Model

ALTA - (A)utomatic (L)yrics (T)ranscription & (A)lignment

A kaldi recipe for automatic lyrics transcription and audio-to-lyrics alignment tasks.

```
If you use this repository, please cite it as follows:
```

Link to paper : https://anxiv.org/abs/2007.06466

@inproceedings(deminel2020, title={Automatic tyrics transcription using dilated convolutional neural networks with self-attent, autor=(Deminet, Emin and Ahiback, Swer and Dixon, Simon), booktitle={International Joint Conference on Neural Networks}, publisher=(IEEE), ywar=[2020] }

Fig. 1: Pipeline of our lyrics transcription and alignment system

Anchor Selection

Fig. 2: Anchor selection. W_n and \hat{W}_n are the reference and predicted words respectively. D and S stand for word deletions and substitutions after text alignment. C are the labels for correctly recognized (matching) words.

Fig. 1: Pipeline of our lyrics transcription and alignment system

Audio-to-Lyrics Segmentation

Fig. 2: Anchor selection. W_n and \hat{W}_n are the reference and predicted words respectively. D and S stand for word deletions and substitutions after text alignment. C are the labels for correctly recognized (matching) words.

Start from the 1st word, progress linearly and segment once **k** number of anchoring words are met.

Fig. 1: Pipeline of our lyrics transcription and alignment system

Audio-to-Lyrics Segmentation

Fig. 1: Pipeline of our lyrics transcription and alignment system

Evaluation Set:

- JamendoLyrics dataset

(<u>https://github.com/f90/jamendolyrics</u>)

- 20 songs, not mainstream, open-source
- Polyphonic music various genre including pop, hiphop, reggae, rock,

metal

- English

(*) Stoller, Daniel, Simon Durand, and Sebastian Ewert. "End-to-End Lyrics Alignment Using An Audio-to-Character Recognition Model." (2019).

(**) Gupta, Chitralekha, Emre Yılmaz, and Haizhou Li. "Automatic Lyrics Alignment and Transcription in Polyphonic Music: Does Background Music Help?." *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2020

(***) Vaglio, Andrea, et al. "Multilingual lyrics-to-audio alignment."

Audio-to-Lyrics Alignment

Evaluation Metrics

- Average absolute error/deviation (mean, median) *
- Percentage of correct estimates (according to a tolerance window go 0.3 sec)**

(*) Mesaros, Annamaria, and Tuomas Virtanen. "Automatic alignment of music audio and lyrics." *Proceedings of the 11th Int. Conference on Digital Audio Effects (DAFx-08)*. 2008.

(**) Mauch, Matthias, Hiromasa Fujihara, and Masataka Goto. "Integrating additional chord information into HMM-based lyrics-to-audio alignment." *IEEE Transactions on Audio, Speech, and Language Processing* (2011):

Audio-to-Lyrics Alignment

Results

	Mean AE	Median AE	PCS
SD1 [7]	0.82	0.10	0.85
SD2 [7]	0.39	0.10	0.87
VA [5]	0.37	N/A	0.92
GC1 [8]	0.22	0.05	0.94
DE1	0.31	0.05	0.93
DE2	0.38	0.05	0.90

Table 1: Lyrics alignment results on the Jamendo dataset

Audio-to-Lyrics Alignment

Memory Consumption

Fig. 3: Memory usage on RAM in megabytes (MB)

	GC1	DE{1,2}
Mean (Std.%)	13,740 (8.8%)	343 (31%)
Max	16,745	748

Table 2: Statistics on memory usage in MB

Automatic Lyrics Transcription

Results

	WER		CER	
	Mauch	Jamendo	Mauch	Jamendo
SD1 [7]	70.09	77.80	48.90	49.20
GC1 [8]	44.02	59.57	N/A	N/A
GC2 [8]	78.85	71.83	N/A	N/A
DE1 - VAR	60.92	62.55	44.15	47.02
DE1 - segmented	50.44	55.47	38.65	42.11
DE2 - VAR	57.36	51.76	41.52	37.26
DE2 - segmented	49.92	44.52	38.41	32.90

 Table 3: Lyrics transcription results

Conclusion

- Competitive results with the s.o.t.a
- A tool for automatically generating sentence-level annotations for lyrics transcription.
- Possibility for lyrics alignment in zero-resource languages.
- Importance of vocal source separation.
- Reported best transcription results on a public benchmark evaluation dataset.
- Red AI vs. Green AI ?

🛛 () in Ƴ

Emir Demirel

Topic: Automatic Lyrics Transcription and Alignment Supervisor: Simon Dixon

e.demirel@qmul.ac.uk