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Our Task
Source separation of choral music

input: choir recording output: individual track

for each choir section

Soprano Alto

Tenor Bass



Motivation

• Personal interest in choir music


• New task, no baseline to compare to


• Fine-grained editing, mixing, and analysis


• Automatic creation of choir practice tracks



Motivation
Why is this useful?

• Hasn’t been tried before


• Fine-grained editing, mixing, and analysis


• Automatic creation of choir practice tracks



Challenges
Why is choral music hard to separate?

• Each section is actually multiple singers with varying pitch, timbre and timing


• Separation must “undo” choral blend


• Lack of datasets



Solo singing Choir singing



Methods

• Unsupervised


• Supervised, with synthesized dataset

Score-informed NMF



Baseline: Score-informed NMF

• Factorizes mixture spectrogram as a product of two matrices: basis signals 
and activations


• Ratio mask is applied to the mixture spectrogram for extracting each source


• Constrained using timing and pitch information from score using a technique 
originally used for piano notes [Ewert and Müller, 2014]



basis 
signals

activations

mixture estimate

Factorizes mixture spectrogram as a product of two matrices:



NMF initializations are constrained using timing and pitch information 
from the musical score:

https://github.com/matangover/score-informed-nmf

https://github.com/matangover/score-informed-nmf
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Score-informed NMF
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Score-informed NMF



Score-informed NMF – Results

• Does not capture continuous evolution of pitch and timbre


• Undesirable amplitude fluctuation artifacts



Methods

• Unsupervised


• Supervised, with synthesized dataset

Score-informed NMF

Score-informed Wave-U-Net



Wave-U-Net

• Encoder-decoder with skip 
connections


• Worked well for vocals & 
accompaniment separation


• Works directly on the time-
domain signal



Synthesized Choir Dataset
Bach chorale harmonizations
• 351 chorales (~4 hours)

• Sample-based synthesis (no lyrics)

• Data augmentation:










            
          

                         
















 
 


















simulated breaths, random omitted notes, and tempo variations

Example: chorale BWV 359 original, augmented, synthesized 
https://github.com/matangover/synthesize-chorales

http://www.bach-chorales.com/BWV0359.htm
http://www.matangover.com/choirsep-ismir/assets/chorale_bwv_359_modified.pdf
http://www.matangover.com/choirsep-ismir/audio/reference/mix.wav.m4a


Problem: voice crossings

Model learned to rely on SATB ordering of voices

Bass

Tenor

Alto

Soprano

   

           
                   
    






























voice crossingsome voices 
are silent 



Conditioning on Score

• Part’s score represented as a time series: indicates the active pitch (if any) at 
any given time point


• Score aligned with the audio: score time resolution is identical to audio 
sampling rate.


• 4 score representations x 3 conditioning locations



Score Representations

• Piano roll: A one-hot matrix of size p x n, where p is the total number of pitches and n is 
the number of time samples


• Normalized pitch: A vector containing the active pitch, normalized to the range [0,1]. -1 
is used to indicate silence


• Pitch and amplitude: A two-channel representation:


• The pitch channel is a vector containing the active pitch, normalized to [-1,1]


• The amplitude channel contains 1 if any note is active, and 0 otherwise


• Pure tone: Represents the score in an audio-like form: a pure tone signal constructed as 
a piecewise sine function where the frequency is controlled by the active note’s pitch



Conditioning Locations
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Score-informed Wave-U-Net
Model configurations

Each source is extracted

using a separate model
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      Mixture

      A       T       B

Wave-
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Multi-source model extracts

any source (score-guided)

Wave-U-Net
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Experiments



Results
Wave-U-Net vs. NMF

• Wave-U-Net outperforms the NMF baseline 
by a large margin


• Using a separate model per source performs 
better than a single model for all sources (but 
uses 4x the amount of parameters, of course)


• Soprano is easiest to separate. Inner voices 
are more difficult

Evaluation metric: source to distortion ratio 
(SDR) provided by the BSS Eval library.



Results
Wave-U-Net: with score vs. without score

• Using the score improves separation 
performance, especially for the inner 
voices


• The score is used to disambiguate voice 
crossings and other difficult cases


• The multi-source (score-guided) model 
performs well even though it uses only a 
single model to extract any of the sources



Results
Comparing score conditioning methods

• Score representation does not make big difference


• Score conditioning leads to artifacts at note 
boundaries

✴ due to the discontinuity of score?

✴ Pure tone score type reduces these artifacts


• Conditioning at the output layer performs badly

✴ likely because the output layer is merely a dot 

product


• Try more versatile conditioning, e.g. FiLM



Results
Evaluation on real choir recordings

Wave-U-Net trained on 
synthesized dataset does not 
generalize well to real 
recordings. 
 
Score-informed NMF still 
performs better in this case

Using recordings from Choral Singing Dataset



Results – Bottom Line

• Wave-U-Net outperforms NMF on synthesized dataset by large margin


• Score is successfully used to disambiguate misclassified notes


• NMF still performs better on real choir recordings



Next steps
• Still some way to go for real choir music [people are working on it]


• Need multi-track choir datasets:


• Collaborate with learning track websites, virtual choir initiatives


• Better synthesis methods: automating choir VSTs, using modern choir synthesis


• Unsupervised and semi-supervised: Mixtures of mixtures


• Integrate instrumental accompaniment separation


• Non-aligned scores (joint ‘transcription’ and separation)


• Input features: Spectrograms or learned filter banks

https://arxiv.org/abs/2008.07645
https://youtu.be/gqFO4x57xlw?t=104
https://freesound.org/people/MTG/sounds/511618/


Thank you!
https://www.matangover.com/choirsep-ismir


