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ABSTRACT

This paper proposes a computationally efficient method
for computing the constant-Q transform (CQT) of a time-
domain signal. CQT refers to a time-frequency represen-
tation where the frequency bins are geometrically spaced
and the Q-factors (ratios of the center frequencies to band-
widths) of all bins are equal. An inverse transform is pro-
posed which enables a reasonable-quality (around 55dB
signal-to-noise ratio) reconstruction of the original signal
from its CQT coefficients. Here CQTs with high Q-factors,
equivalent to 12–96 bins per octave, are of particular inter-
est. The proposed method is flexible with regard to the
number of bins per octave, the applied window function,
and the Q-factor, and is particularly suitable for the anal-
ysis of music signals. A reference implementation of the
proposed methods is published as a Matlab toolbox. The
toolbox includes user-interface tools that facilitate spectral
data visualization and the indexing and working with the
data structure produced by the CQT.

1. INTRODUCTION

Constant-Q transform (CQT) here refers to a technique
that transforms a time-domain signal x(n) into the time-
frequency domain so that the center frequencies of the fre-
quency bins are geometrically spaced and their Q-factors
are all equal. In effect, this means that the frequency res-
olution is better for low frequencies and the time resolu-
tion is better for high frequencies. The CQT is essen-
tially a wavelet transform, but here the term CQT is pre-
ferred since it underlines the fact that we are consider-
ing transforms with relatively high Q-factors, equivalent
to 12–96 bins per octave. This renders many of the con-
ventional wavelet transform techniques inadequate; for ex-
ample methods based on iterated filterbanks would require
filtering the input signal hundreds of times.

The CQT is well-motivated from both musical and per-
ceptual viewpoints. The fundamental frequencies (F0s) of
the tones in Western music are geometrically spaced: in
the standard 12-tone equal temperament, for example, the
F0s obey Fk = 440Hz× 2k/12, where k ∈ [−50, 40] is an
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integer. From auditory perspective, the frequency resolu-
tion of the peripheral hearing system of humans is approx-
imately constant-Q over a wide range from 20kHz down to
approximately 500Hz, below which the Q-values get pro-
gressively smaller [1]. From perceptual audio coding, we
know that the shortest transform window lengths have to
be of the order 3ms in order to retain high quality, whereas
higher frequency resolution is required to carry out coding
at low frequencies [2]. All this is in sharp contrast with
the conventional discrete Fourier transform (DFT) which
has linearly spaced frequency bins and therefore cannot
satisfy the varying time and frequency resolution require-
ments over the wide range of audible frequencies.

There are at least three reasons why the CQT has not
widely replaced the DFT in audio signal processing. Firstly,
it is computationally more intensive than the DFT. Sec-
ondly, the CQT lacks an inverse transform that would allow
perfect reconstruction of the original signal from its trans-
form coefficients. Thirdly, CQT produces a data structure
that is more difficult to work with than the time-frequency
matrix (spectrogram) obtained by using short-time Fourier
transform in successive time frames. The last problem is
due to the fact that in CQT, the time resolution varies for
different frequency bins, in effect meaning that the ”sam-
pling” of different frequency bins is not synchronized. In
this paper, we propose solutions to these three problems.

As already mentioned above, constant-Q transform can
be viewed as a wavelet transform. The wavelet literature is
well-matured (see e.g. [3]) and constant-Q (wavelet) trans-
forms have been proposed that lead to perfect reconstruc-
tion. However most of the work has focused on critically-
sampled dyadic wavelet transforms, where the frequency
resolution is only one bin per octave – this is clearly in-
sufficient for music signal analysis. Recently, perfect re-
construction wavelet transforms have been proposed that
have rational dilation factors, meaning that the center fre-
quencies of the bins are spaced by p/q, where p and q are
integers [4, 5]. However, these are based on iterated fil-
ter banks and are therefore less attractive computationally
when high Q-factors, such as 12–96 bins per octave, are re-
quired. Another interesting direction of research has been
the application of frequency warping on a time-domain sig-
nal in such a way that the DFT of the warped signal is
related to the DFT of the original signal via a frequency
warping function [6, 7]. A problem with these is that the
warping filters have infinite impulse responses which makes
it hard to design an inverse transform.

Brown and Puckette proposed a computationally effi-
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cient technique for computing constant-Q transforms with
high Q factors based on the fast Fourier transform (FFT)
and a frequency-domain kernel [8, 9]. A drawback of this
CQT implementation is that there is no inverse transform
for it. Recently, FitzGerald has shown that a good qual-
ity approximate inverse transform can be obtained if the
signal to be inverted has a sparse representation in the dis-
crete Fourier transform domain [10]. However, this is not
true for music signals in general.

This paper proposes specific solutions to the three prob-
lems of CQT mentioned above. Our solution to the compu-
tational efficiency problem is based on the technique pro-
posed by Brown and Puckette in [9] which we extend to
further improve its computational efficiency. Secondly, we
propose to structure the transform kernel in such a way that
reasonable-quality inverse transform (approximately 55dB
signal-to-noise ratio) is obtained using the conjugate trans-
pose of the CQT transform kernel. The reconstruction is
achieved introducing only a moderate amount of redun-
dancy (by factor four or five) to the transform (here re-
dundancy refers to the number of elements in the trans-
form compared to the samples in the original time-domain
signal). Thirdly, we propose interface tools for the data
structure that facilitate working with the signal in the trans-
form domain. A reference implementation of the proposed
methods is provided as a Matlab toolbox at http://www.
elec.qmul.ac.uk/people/anssik/cqt/.

2. SIGNAL MODEL

The CQT transform XCQ(k, n) of a discrete time-domain
signal x(n) is defined by

XCQ(k, n) =

n+bNk/2c∑
j=n−bNk/2c

x(j)a∗k(j − n+Nk/2) (1)

where k = 1, 2, . . . ,K indexes the frequency bins of the
CQT, b·c denotes rounding towards negative infinity and
a∗k(n) denotes the complex conjugate of ak(n). The basis
functions ak(n) are complex-valued waveforms, here also
called time-frequency atoms, and are defined by

ak(n) =
1

Nk
w

(
n

Nk

)
exp

[
−i2πnfk

fs

]
(2)

where fk is the center frequency of bin k, fs denotes the
sampling rate, and w(t), is a continuous window func-
tion (for example Hann or Blackman window), sampled
at points determined by t. The window function is zero
outside the range t ∈ [0, 1].

The window lenghts Nk ∈ R in (1)–(2) are real-valued
and inversely proportional to fk in order to have the same
Q-factor for all bins k. Note that in (1) the windows are
centered at the sample n of the input signal. Different win-
dow functions will be discussed in Sec. 5.

In the CQT considered here, the center frequencies fk
obey

fk = f12
k−1
B (3)

where f1 is the center frequency of the lowest-frequency
bin, and B determines the number of bins per octave. In

practice,B is the most important parameter of choice when
using the CQT, because it determines the time-frequency
resolution trade-off of the CQT.

The Q-factor of bin k is given by

Qk
def.
=

fk
∆fk

=
Nkfk
∆ωfs

(4)

where ∆fk denotes the −3dB bandwidth of the frequency
response of the atom ak(n) and ∆ω is the −3dB band-
width of the mainlobe of the spectrum of the window func-
tion w(t), being ∆ω ≈ 1.50 [DFT bins] for the Hann win-
dow and ∆ω ≈ 1.73 for Blackman, for example. The Q-
factors Qk are by definition the same for all bins, therefore
we omit the subscript and write simply Q below.

It is typically desirable to make Q as large as possible,
so as to make the bandwidth ∆fk of each bin as small as
possible and thus introduce minimal frequency smearing.
However, we cannot employ arbitrarily high Q factors –
otherwise portions of the spectrum between the bins would
not be analyzed. The value of Q that introduces minimal
frequency smearing but still allows signal reconstruction is

Q =
q

∆ω(2
1
B − 1)

(5)

where 0 < q / 1 is a scaling factor, and typically q = 1.
Values of q smaller than 1 can be used to improve the time
resolution at the cost of degrading the frequency resolu-
tion. Important to note is that setting for example q = 0.5
and B = 48 leads to exactly the same time-frequency res-
olution trade-off as setting q = 1 and B = 24, but the
former contains twice more frequency bins per octave. In
this sense, values q < 1 can be seen to implement oversam-
pling of the frequency axis, analogously to the use of zero
padding when calculating the DFT. For example q = 0.5
corresponds to oversampling factor of 2: the effective fre-
quency resolution is equivalent to B/2 bins per octave, al-
though B bins per octave are computed.

Substituting (5) in (4) and solving for Nk, we get

Nk =
qfs

fk(2
1
B − 1)

(6)

where we see that the dependency on ∆ω has disappeared.
It is not computationally reasonable to calculate the co-

efficients XCQ(k, n) at all positions n of the input signal.
To enable signal reconstruction from the CQT coefficients,
successive atoms can be placed Hk samples apart (“hop
size”). In order to analyze all parts of the signal prop-
erly and to achieve reasonable signal reconstruction, values
0 < Hk / 1

2Nk are useful.

3. ALGORITHM FOR COMPUTING THE
TRANSFORM

The computationally-efficient forward CQT transform pro-
posed here is based on the principles proposed by Brown
and Puckette in [9]. Therefore we first explain the tech-
nique proposed in [9] and then describe the extensions in
Subsection 3.2.
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Figure 1. The upper panel illustrates the real part of the
transform bases (temporal kernel) that can be used to cal-
culate the CQT over two octaves, with 12 bins per octave.
The lower panel shows the absolute values of the corre-
sponding spectral kernel.

3.1 Algorithm of Brown and Puckette

Let us assume that we want to calculate the CQT trans-
form coefficients XCQ(k, n) as defined by (1) at one point
n of an input signal x(n). A direct implementation of (1)
obviously requires calculating inner products of the input
signal with each of the transform bases. The upper panel of
Fig. 1 illustrates the real part of the transform bases ak(n),
assuming here for simplicity only B = 12 bins per octave
and a frequency range of two octaves.

A computationally more efficient implementation is ob-
tained by utilizing the identity

N−1∑
n=0

x(n)a∗(n) =

N−1∑
j=0

X(j)A∗(j) (7)

where X(j) denotes the discrete Fourier transform (DFT)
of x(n) and A(j) denotes the DFT of a(n). Equation (7)
holds for any discrete signals x(n) and a(n) and stems
from Parseval’s theorem [3].

Using (7), the CQT transform in (1) can be written as

XCQ(k,N/2) =

N∑
j=0

X(j)A∗k(j) (8)

where Ak(j) is the complex-valued N -point DFT of the
transform basis ak(n) so that the bases ak(n) are centered
at the pointN/2 within the transform frame. Following the

terminology of [9], we will refer to Ak(j) as the spectral
kernels and to ak(n) as the temporal kernels. The lower
panel of Fig. 1 illustrates the absolute values of the spectral
kernels Ak(j) corresponding to temporal kernels ak(n) in
the upper panel.

As observed by Brown and Puckette, the spectral ker-
nels Ak(j) are sparse: most of the values being near zero
because they are Fourier transforms of modulated sinu-
soids. Therefore the summation in (8) can be limited to
values near the peak in the spectral kernel to achieve suf-
ficient numerical accuracy – omitting near-zero values in
Ak(j). This is the main idea of the efficient CQT transform
proposed in [9]. It is also easy to see that the summing has
to be carried out for positive frequencies only, followed by
multiplication by two.

For convenience, we store the spectral kernels Ak(j) as
columns in matrix A. The transform in (8) can then be
written in matrix form as

XCQ = A∗X (9)

where A∗ denotes the conjugate transpose of A. Matrices
X and XCQ have only one column each, containing the
DFT valuesX(j) and the corresponding CQT coefficients,
respectively.

3.2 Processing One Octave at a Time

There are two remaining problems with the method out-
lined in the previous subsection. Firstly, when a wide range
of frequencies is considered (for example, eight octaves
from 60Hz to 16kHz), quite long DFT transform blocks are
required and the spectral kernel is no longer very sparse,
since the frequency responses of higher frequency bins are
wider as can be seen from Fig. 1. Secondly, in order to
analyze all parts of the input signal adequately, the CQT
transform for the highest frequency bins has to be calcu-
lated at least every NK/2 samples apart, where NK is the
window length for the highest CQT bin. Both of these fac-
tors reduce the computational efficiency of the method.

We propose two extensions to address the above prob-
lems. The first is processing by octaves. 2 We use a spec-
tral kernel matrix A which produces the CQT for the high-
est octave only. After computing the highest-octave CQT
bins over the entire signal, the input signal is lowpass fil-
tered and downsampled by factor two, and then the same
process is repeated to calculate the CQT bins for the next
octave, using exactly the same DFT block size and spec-
tral kernel (see (8)). This is repeated iteratively until the
desired number of octaves has been covered. Figure 2 il-
lustrates this process.

Since the spectral kernel A now represents frequency
bins that are at maximum one octave apart, the length of
the DFT block can be made quite short (according to Nk

of the lowest CQT bin) and the matrix A is very sparse
even for the highest-frequency bins.

Another computational efficiency improvement is ob-
tained by using several temporally translated versions of
the transform bases ak(n) within the same spectral kernel

2 We want to credit J. Brown for mentioning this possibility already in
[8], although octave-by-octave processing was not implemented in [8, 9].



Figure 2. An overview of computing the CQT one octave
at the time. Here G(f) is a lowpass filter and ↓ 2 denotes
downsampling by factor two.

matrix A. In other words, successive columns of A con-
tain the DFTs of ak(n) that have been temporally shifted
to different locations. As a result, DFT transforms of the
input signal x(n) to obtain the DFT spectrum X(j) in (8)
need to be computed less often: if there are P successive
atoms within the same spectral kernel, the DFTs need to be
computed P times less often.

Figure 3 illustrates the general structure of the kernel
matrix applied in this paper. In the shown example, the
number of bins per octave B = 12. By looking closely,
it can be seen that the highest four kernel functions have
the same center frequency, but correspond to four differ-
ent temporal locations. Similarly, the two lowest kernel
functions correspond to the same frequency, but different
temporal locations. The detailed structure of the spectral
kernel will be discussed in Sec. 5; here it suffices to say
that the kernel structure is crucial for high-quality recon-
struction (inverse CQT) of the input signal x(n) from the
CQT coefficients.

The transform for a single octave (indicated by ”CQT
for one octave” in Fig. 2) is defined as follows. Let xd(n)
denote a signal that is obtained by decimating the input
signal d times by factor two. The sampling rate of xd(n)
is therefore fs/2d. The signal xd(n) is blocked into DFT
transform frames of lengthNDFT which are positionedHDFT

samples apart (i.e., successive frames overlap by NDFT −
HDFT samples). Each frame is Fourier transformed using a
rectangular window and the resulting spectrogram is stored
in a matrix X, where column m contains the complex-
valued spectrum of frame m (positive frequencies only).
Then the CQT transform XCQ

d for this octave d is calcu-
lated as

XCQ
d = A∗Xd (10)

where A∗ is the conjugate transpose of the complex-valued
spectral kernel matrix for one octave as described above.
The column m of XCQ

d contains the CQT coefficients rep-
resenting DFT block m and the different rows of XCQ

d cor-
respond to the different spectral kernels that are stored in
the different columns of matrix A.

The above process is repeated for each successive oc-
tave, as illustrated in Fig. 2. Note that the kernel remains
the same for all octaves. Also, the DFT length NDFT (in
samples) remains the same despite the decimations, there-

Figure 3. Illustration of the general structure of the kernel
matrices used in this paper. The upper panel shows the real
part of the temporal kernel used to compute the CQT for
one octave. The lower panel shows the absolute values of
the corresponding spectral kernel.

fore the effective FFT length (in seconds) doubles in each
decimation. The first octave is computed using signal x0(n),
which is identical to the input, x(n).

The decimated signals xd(n) are obtained from xd−1(n)
by lowpass filtering and downsampling by factor two. For
the lowpass filter G(f), we use zero-phase forward-and-
reverse filtering with a sixth-order Butterworth IIR filter
that has a cut-off frequency fs/4. Forward-and-reverse fil-
tering means that after filtering in the forward direction,
the filtered sequence is reversed and run back through the
filter and the result of the second filtering is then reversed
once more. The result has precisely zero phase distortion
and magnitude modified by the square of the filter’s mag-
nitude response. Figure 4 shows the magnitude response of
the lowpass filter G(f) (square of the magnitude response
of sixth-order Butterworth filter). Downsampling by factor
two is then done simply by removing every second sample
of the time-domain signal.

A final practical consideration is to deal with the be-
ginning and end of the input signal x(n). We address
this problem by padding 2D−1N1 zeros at be beginning
of the signal and 2D−1NDFT zeros at the end of the signal,
whereN1 is the window length of the lowest-frequency bin
within the one-octave kernel, D is the number of octaves
calculated, and NDFT is the length of the DFT frame. The
zero padding is done before any of the CQT computations,
and the zeros are then removed at the inverse transform
stage. Note that a smaller number of zeros is needed, if the



Figure 4. Magnitude response of the lowpass filter G(f).

zero padding is done separately for each octave, but this
would make the implementation less clear and therefore
we assume that the number of zeros padded is negligible
in comparison to the length of the input signal x(n).

3.3 Computational Complexity

Let L denote the length of the input signal x(n) after the
zero padding at the beginning and the end. The number of
DFT frames m to cover the entire signal before any deci-
mation is b(L − NDFT)/HDFTc + 1. For the next octave,
the number of fast Fourier transforms (FFTs) is roughly
twice smaller, b(L/2 − NDFT)/HDFTc + 1, in fact a bit
more than twice smaller. For the next octave, the num-
ber of DFT transforms is rought four times smaller, and so
forth. Since 1 + 1

2 + 1
4 + 1

8 + . . . ≈ 2, the total number C
of FFTs to compute is

C ≤ 2 (b(L−NDFT)/HDFTc+ 1) (11)

regardless of the number of octaves computed.
For each of theC DFT frames, the complex-valued DFT

spectrum (a column vector) has to be multiplied by the
conjugate transpose of the spectral kernel A∗ (see (10)).
However, since A is sparse, the number of multiplications
is quite small. In our reference Matlab implementation, the
matrix is implemented as a sparse matrix, therefore also the
memory complexity of storing A is quite low. The exact
number of non-zero elements in A depends on the kernel
structure and the threshold below which the near-zero ele-
ments are rounded to zero (see 8). The number of lowpass
filterings is proportional to the number of octaves D and
causes a non-negligible computational load too.

To compare the complexity of the proposed method with
that of the original method by Brown and Puckette [9],
consider a case where the CQT is computed over an eight-
octave range. If atoms over all octaves are stored into a
single kernel, the frequency kernels in the highest octave
will have 27 = 128 times more non-zero elements than the
corresponding atoms in the lowest octave, and the number
of multiplications in (9) increases in the same proportion.
The lengths of the DFT transform frames, in turn, have to
be 128 times larger in order to accommodate the lowest-
frequency atoms without decimation.

4. INVERSE CQT TRANSFORM

Figure 5 shows an overview of the inverse CQT transform
(ICQT), where an approximation x̂(n) of the input sig-
nal x(n) is reconstructed from the octave-wise CQT co-

Figure 5. An overview of the inverse CQT transform
(ICQT), where an approximation x̂(n) of the input sig-
nal x(n) is reconstructed from the octave-wise CQT co-
efficient matrices XCQ

d .

efficient matrices XCQ
d . The process is analogous to the

forward transform, except that all is done in reverse order.
The block indicated by ”ICQT for one octave” in Fig. 5

corresponds to the reconstruction of a time-domain signal
yd(n) that represents only one-octave range of the input
signal x(n). The signal yd(n) is obtained as follows. First,
an inverse spectral kernel V is applied to reconstruct the
complex-valued DFT bins within this single octave:

Yd = V∗XCQ
d (12)

where the column m of Yd contains the complex-valued
DFT approximating the column m of Xd in (10), but only
over the frequency bins that belong to this octave – outside
this octave, Yd is zero. The structure of the inverse spec-
tral kernel V will be described in Sec. 5: we use kernels
for which V = A∗, meaning that the inverse kernel is a
conjugate transpose of the forward transform kernel. 3

Since each column of Yd only contains the DFT spec-
trum for the positive frequencies, each column is augmented
with its complex conjugate spectrum to reconstruct the neg-
ative frequencies (for real-valued time-domain signals, the
DFT spectrum is conjugate-symmetric). The resulting columns
are inverse DFT transformed to obtain the time-domain
signals within each DFT block, and successive DFT blocks
are then overlap-added to construct the entire signal yd(n)
over time.

The signal yd(n) contains a reconstruction of one oc-
tave of the original input signal x(n). This signal is added
to a signal that already contains a reconstruction of all the
lower octaves (d+ 1, d+ 2, . . . , D−1) in order to obtain a
signal x̂d(n) that approximates the input signal for octaves
d, d+1, . . . , D−1. The signal x̂d(n) is then upsampled by
factor two by inserting zeros between the original samples,
multiplying the signal by two, and lowpass filtering using
zero-phase forward-and-reverse filtering with a sixth-order
Butterworth IIR filter having cut-off frequency fs/4 (the
same that was used at the analysis stage).

The above process is repeated for each octave at a time,
as illustrated in Fig. 5. After reconstructing all the octaves,
d = 0, 1, . . . , D − 1, the resulting signal x̂0(n) ≡ x̂(n) is
an approximate reconstruction of the input signal x(n).

3 Note that then Yd = V∗XCQ
d = AA∗Xd, where multiplication

by AA∗ actually implements a near-perfect one-octave bandpass filter.



The computational complexity of the inverse transform
is approximately the same as that of the forward transform:
here, instead of FFTs, inverse FFTs are computed, and in-
stead of the spectral kernel, the inverse kernel is applied.
Since we use V = A∗, the inverse kernel is sparse too.

5. KERNEL DESIGN

As already mentioned in Sec. 3.2, we use a transform ker-
nel that contains frequency bins over one octave range, and
several time-shifted atoms for each frequency bin k. These
time-shifted atoms should cover the input signal over the
HDFT samples between the beginning of DFT framem and
the beginning of the next frame, m+ 1.

5.1 General Considerations

It is natural to expect that all samples of the input signal
x(n) have an equal weight in the transform, and therefore
to require that successive window functions w(n) for bin
k sum up to approximately unity over the entire signal. In
the case of an analysis-synthesis system (CQT followed by
inverse CQT), the squares of successive window functions,
[w(n)]

2, have to sum to unity. This is because the signal
will be windowed twice at the time-frequency location of
each atom: once when applying A∗ for the CQT, and sec-
ond time when applying V∗ ≡ A for the ICQT. Applying
windowing at the synthesis (ICQT) stage is necessary in or-
der to avoid audible artefacts if the signal is manipulated in
the CQT transform domain. If no processing takes place in
the transform domain, the above requirement (that [w(n)]

2

sum to unity) leads to a high-quality reconstruction.
Typically, then, the window function w(n) is defined to

be the square root of one of the commonly used window
functions (e.g. Hann or Blackman). For analysis-only ap-
plications, the square root can be omitted to improve the
time-frequency localization properties of the window.

Most window functions (e.g. Hann and Hamming) sum
to a constant value only when the distance between suc-
cessive windows Hk = 1

zNk, where z ≥ 2 is an integer
and Nk is the window size for atom k. For an individual
frequency bin k, the DFT frame hop HDFT can be chosen
to be an integer multiple of 1

zNk so that exactly an integer
number of time-shifted atoms would fit between the begin-
nings of frame m and m+ 1, and these time-shifted atoms
would be stored in the kernel A. However, this require-
ment for HDFT cannot be simultaneously satisfied for all
frequency bins k with different Nk. A reasonable solution
is obtained by using a relatively large DFT frame size, in
which case HDFT can be made large relative to atom sizes
Nk, and therebyHDFT approximately divisible by 1

zNk for
all k. This approach leads to a reasonable quality results.
However, due to the fact that such a kernel contains a dif-
ferent number of atoms for each bin, accessing and ma-
nipulating the CQT coefficients in the transform domain
becomes slightly more complicated numerically, and the
quality of the reconstruction degrades since neighbouring
atoms are not temporally synchronized. Also, sparsity of
the spectral kernel A suffers since DFT frame size is large
relative to the atom sizes Nk.

5.2 Proposed Kernel Structure

Due to the above reasons, we propose a kernel, where the
atoms within each octave are synchronized in the sense that
they are centered at the same, successive, points in time.
In this case, the temporal ripple can be minimized by us-
ing a window function that roughly sums up to unity for a
wide range of overlap values. Blackman and Blackman-
Harris windows are particularly suitable here: provided
that successive windows overlap at least by 66% and 75%
for Blackman and B.-Harris windows, respectively, the ex-
act amount of overlap is not important, but successive win-
dows sum up to approximately a constant value which can
be normalized to unity. Using such windows it is now pos-
sible to use the same number of temporal atoms for each
bin by defining a common hop size HATOM for all atoms
in the kernel. The relative hop size HATOM/Nk will thus
vary accross bins k, but only up to the factor two between
the smallest and the largest atom in the one-octave kernel.

The parameter HATOM determines a trade-off between
reconstruction quality (SNR of the signal reconstructed by
ICQT) and redundancy of the representation. Having small
value ofHATOM leads to high quality, but also more redun-
dancy, that is, larger number of CQT coefficients in propor-
tion to the number of samples in the input signal. However,
a default value for HATOM is easy to calculate: we recom-
mend using HATOM/NK ≈ 1

3 or 1
4 , where NK denotes the

lenght of the shortest atom within the one-octave kernel.
This leads to redundancy factors around five and quality
that is near to the optimal (around 55dB).

It should be noted that although the atoms are centered
at same temporal positions within each octave, at the next-
lower, octave, the atoms are centered at only every second
of these temporal positions, due to the decimation by factor
two before processing the next octave.

The number of temporally shifted atoms within the one-
octave kernel is the same for all bins k in the above-described
approach. In practice, we choose a DFT frame length that
is the next power of two of the largest atom within the oc-
tave, and then populate the kernel with as many temporally
shifted atoms as there fit. The DFT frame hopHDFT is then
chosen accordingly. This leads to the most sparse spectral
kernel A and therefore the fastest implementation.

To understand why neighbouring bins sum up to unity
over frequency (and not just over time), note that within
each octave, neighbouring bins are centered at same point
and their lengths Nk are only slightly different, assuming
B > 12 bins per octave. As a result, the neighbouring bins
perform sampling of time-frequency domain that is locally
very similar to that of the DFT, and similarly to the DFT,
sum up to an almost perfectly flat frequency response.

6. REDUNDANCY

The redundancy factor R of the proposed CQT transform
is given by

R =
2CCQT

CIN
(13)

where CCQT and CIN denote the amount of CQT coeffi-
cients and the amount of samples in the input signal, re-



spectively. The factor 2 is due to the fact that CQT coeffi-
cients are complex-valued.

The amount of CQT coefficients produced by process-
ing the highest octave is COCT = CINB/(hNK), where
h = HATOM/NK is the atom hop size relative to the length
NK of the shortest atom (hiqhest-frequency bin). Substi-
tuting the length NK from (6), we get

COCT =
CINfKB(2

1
B − 1)

hqfs
≈ 0.7CINfK

hqfs
(14)

where the latter approximation is obtained by noting that
B(2

1
B − 1) ≈ 0.7 when B ≥ 12. Here we have assumed

that the number of bins per octave B ≥ 12.
Since the length of the input signal decreases by the fac-

tor of two at each decimation, it is easy to see from (14)
that the number of CQT coefficients decreases by the same
factor for each octave down. Therefore the overall amount
of data for a large number of octaves is COCT(1 + 1

2 + 1
4 +

1
8 + . . .) ≈ 2COCT. Substituting this to (13), the overall
redundancy of the CQT transform is

R =
2× 2× COCT

CIN
=

2.8fK
hqfs

. (15)

Here we can see that the redundancy is proportional to
the highest frequency analyzed, fK , and inversely propor-
tional to the relative atom hop size h and the Q-value scal-
ing factor q (see 5).

7. INTERFACE TOOLS FOR THE CQT DATA

In the described kernel structure, temporal positions where
XCQ(k, n) is calculated are the same for all bins within
one octave (although the actual time resolution of course
decreases from the highest to the lowest bin since the atom
lengths vary). Moving down to the lower octaves, how-
ever, the number of points where XCQ(k, n) is evaluated
decreases by factor two at each octave, and therefore the
number of time points whereXCQ(k, n) is evaluated is not
the same for all bins from the lowest frequency bin (of the
lowest octave) to the highest bin (of the highest octave).

In order to allow the user an easy access to the infor-
mation without minding the inherent time sampling tech-
nique, the reference implementation of the toolbox in Mat-
lab contains interface tools to access the CQT data in a
representation that is regularly sampled in time. This “ras-
terised” CQT data structure is achieved by data interpo-
lation between the time points XCQ(k, n) that have been
computed by the CQT. With the interface tools, the user
can obtain the entire CQT matrix representing the input
data, or access only extracts of it. It is also possible to
access only a certain time slice n of the CQT transform
XCQ(k, n) or all the CQT coefficients of a certain fre-
quency bin over time.

Another important tool is a function for plotting the
magnitude of the CQT transformXCQ(k, n) in a form sim-
ilar to the DFT spectrogram using the described interpo-
lation technique. Figure 6 shows the CQT transform of
a four-second music excerpt containing singing, acoustic
guitar, bass, and synthesizer sounds. More examples can
be found online at the URL given in Introduction.

Figure 6. CQT transform of a music excerpt containing
singing, acoustic guitar, bass, and synthesizer sounds.

8. RESULTS

Figure 7 shows the quality of the reconstructed time-domain
signal x̂(n) as a function of the redundacy R (see (13))
and different window functions w(n). Here the number of
bins per octave was B = 48. In this plot, the redundancy
was increased by decreasing the relative hopsize h of the
shortest atom from 0.6 to 0.1. A constant Q scaling factor
q = 1 has been used, which means that only time-domain
redundancy has been added. Using q = 0.5 (frequency-
domain oversampling) would improve the quality further
by ≈ 3dB but also increase the redundancy by factor two,
therefore results are shown only for q = 1.

The input signal was Gaussian random noise, bandpass
filtered to contain only frequency components within the
range being analysed: we used fK = fs/3 = 14.7kHz for
the highest CQT bin, and analyzed eight octaves down to
57Hz. Random noise represents a “worst case”: for music
signals, the reconstruction quality is typically a few deci-
bels better. Redundancy factors were calculated by substi-
tuting fK = 14.7kHz and fs = 2 × 14.7kHz into (15),
where the latter is the sampling rate required to represent
the time domain signal up to 14.7kHz. 4

Signal-to-noise ratios (SNRs) were calculated by com-
paring the reconstructed signal x̂(n) after inverse CQT with
the input signal x(n):

SNR = 10 log10

∑
n[x(n)]2∑

n[x̂(n)− x(n)]2
(16)

It can be observed that the choice of the window func-
tion has crucial influence on the quality of the reconstruc-
tion. For a very low redundancy, corresponding to a large
atom hop size, the highest SNR values are achieved us-
ing a Hann window. For the redundancy range from 3
to 4.5 the Blackman window performs best, whereas for

4 Note that if an input signal is to be analyzed up to the Nyquist fre-
quency (fK = fs/2), the input signal has to be slightly upsampled (say,
f ′s = 4

3
fs) before applying the proposed method, since the lowpass filter

G(f) in Fig. 4 is not ideal.



Figure 7. Quality of the reconstructed signal as a function
of the window function w(n) and the redundancy R.

Figure 8. Quality of the reconstructed signal as a function
of the number of bins per octave, B, and redundancy R.

R > 4.5 the Blackman-Harris window achieves the high-
est SNR values. This result can be explained by consid-
ering the time ripple of the different window functions for
varying hop sizes. The Blackman-Harris window shows
large time ripple with small overlap values, but for overlap
values greater than 75%, consecutive windows sum up to
unity almost perfectly. The Blackman window has simi-
lar properties but converges slower to a low level of ripple.
Figure 7 shows that using Blackman-Harris window, SNR
values of about 55dB are achieved with R ≈ 5.

Fig. 8 shows the quality of the reconstructed time-domain
signal x̂(n) as a function of the redundacy R (see (13)) us-
ing a Blackman-Harris window and different values for B
(bins per octave). It can be observed that the quality of
the reconstructed signal improves by increasing the num-
ber of bins per octave, achieving up to 60 dB SNR using
B = 96. The property of the Blackman-Harris window ob-
taining the highest SNR values already for low redundancy
values is independent of the number of bins per octave.

9. ACKNOWLEDGEMENT

Thanks to Wen Xue from Queen Mary University of Lon-
don for constructive comments on a draft of this paper.

10. CONCLUSIONS

Computationally efficient methods were proposed for com-
puting the CQT and its inverse transform. The proposed
techniques lead to a reasonable-quality reconstruction (around
55dB) of an input signal from its CQT coefficients while
requiring only moderate redundancy (by factor four or five)
in the CQT representation. A reference implementation of
the methods is provided as a Matlab toolbox. It is hoped to
be useful for several applications, including sound source
separation, music signal analysis, and audio effects.
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