

Software Sustainability Services

Some vague initial technical thoughts
Chris Cannam, March 2010

What services do we want to offer?

 Code repository
● For use by developers of new software

and maintainers of old software

 Build service
● Continuous integration
● Cross-platform builds, unit tests

 Data service
● Perhaps integrated with build & test procedures

 What else?

Successful services

 Will be immediately useful
● Obvious how the service will assist research & development
● Factors specific to our field to make it more compelling than

other existing services

 Will not present cultural or diplomatic obstacles
● e.g. support “private” work protected (from us, and others) by

both technical and policy mechanisms

 Will help to build the community by making associations
between related pieces of work, and between code and
publications

 Will be friendly, reliable, and trustworthy

Some technical goals

 Simple integrated build service: commit code →
trigger cross-platform rebuild and test → read a
report of current status on the website

 Easy authentication, preferably permitting existing
credentials such as OpenID
● At least 15% of our Subversion users have forgotten their

passwords

 Support multiple projects with different “owners”,
but permit individuals to work on many of them

 Support various “hosting levels” (see next page)

Levels of hosted-ness

1. New code developed entirely within the service
● Open source / closed source / “decide later”

2. Code published elsewhere then maintained within
the service (abandonware, forks)

3. Code published elsewhere but mirrored / tracked
within the service (build, test, portability services)

● Diplomatic considerations – needs to be clear that this is an
assistance rather than a rival to existing developers

4. Code hosted entirely elsewhere but which the service
assists indexing and discovery of?

Things that would obviously be good

 Providing everything we would need to maintain
Sonic Visualiser (current build infrastructure in
particular is a bit of a mess)

 Providing build, test, and general help
infrastructure for prospective authors of Vamp
plugins

 Providing whatever would be useful for e.g. MSc
students trying to convert Xue's code to plugins

 What else do we know about already...?

Review of existing “forge” services

 SourceForge → the original, recently overhauled
 Savannah, BerliOS, Alioth, many others → based on old

SourceForge code
 Google Code → simple but not always intuitive; popular

with the true geek
 GitHub, BitBucket → specific to Git and Mercurial

respectively; former is very trendy at the moment
 Lighthouse, Assembla, JIRA → commercial offerings

aimed at business use
 Launchpad → Ubuntu/Canonical hosted service

Software for running your “forge”
Name Comments For Against

FusionForge,
Savane

Forks of “original”
SourceForge code

Widely used Clumsy compared with
newer software

Trac Minimal, developer-
focused code and
tracker application

Widely used Single project per
instance; not intuitive to
normal people

InDefero Clone of Google Code

Origo Academic project?
Published by ETH
Zurich

Ugly; apparently not
widely used

Redmine Uses Ruby on Rails Nice to use, has
Mercurial support

Retrospectiva Reminiscent of GitHub;
uses Ruby on Rails

Version control systems

 Centralised
● Subversion the only current practical option

 Distributed
● Git and Mercurial most popular, Bzr most unpronounceable
● Git popular with kernel hackers and überleet
● Mercurial more limited but easier to get into, better cross-platform

support, possibly easier to manage server for (authentication etc)

 Centralised or distributed?
● Distributed may be far more appropriate when hosting or mirroring

software that was originated elsewhere

 Single system, or a choice?

Continuous integration systems

 BuildBot (Python)
 Hudson (Java)
 TeamCity (primarily commercial)
 CruiseControl

● Originally Java, Ruby implementation (CruiseControl.rb)
looks promising if using one of the Ruby forge systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

