Software Sustainability Services

Some vague initial technical thoughts
Chris Cannam, March 2010



What services do we want to offer?

= Code repository

* For use by developers of new software
and maintainers of old software

= Build service

e Continuous integration

e Cross-platform builds, unit tests
= Data service

* Perhaps integrated with build & test procedures
= What else?



Successful services

Will be immediately useful

e Obvious how the service will assist research & development

» Factors specific to our field to make it more compelling than
other existing services

Will not present cultural or diplomatic obstacles

e e.8. support “private” work protected (from us, and others) by
both technical and policy mechanisms

Will help to build the community by making associations
between related pieces of work, and between code and
publications

Will be friendly, reliable, and trustworthy



Some technical goals

= Simple integrated build service: commit code —
trigger cross-platform rebuild and test — read a
report of current status on the website

= Easy authentication, preferably permitting existing
credentials such as OpeniD

e At least 15% of our Subversion users have forgotten their
passwords

= Support multiple projects with different “owners”,
but permit individuals to work on many of them

= Support various “hosting levels” (see next page)



Levels of hosted-ness

1. New code developed entirely within the service
 QOpen source / closed source / “decide later”

2. Code published elsewhere then maintained within
the service (abandonware, forks)

3. Code published elsewhere but mirrored / tracked
within the service (build, test, portability services)

 Diplomatic considerations - needs to be clear that this is an
assistance rather than a rival to existing developers

4. Code hosted entirely elsewhere but which the service
assists indexing and discovery of?



Things that would obviously be good

= Providing everything we would need to maintain
Sonic Visualiser (current build infrastructure in
particular is a bit of a mess)

* Providing build, test, and general help
infrastructure for prospective authors of Vamp

plugins

= Providing whatever would be useful for e.g. MSc
students trying to convert Xue's code to plugins

= What else do we know about already...?



Review of existing “forge” services

= SourceForge — the original, recently overhauled

= Savannah, BerliOS, Alioth, many others — based on old
SourceForge code

= Google Code — simple but not always intuitive; popular
with the true geek

= GitHub, BitBucket — specific to Git and Mercurial
respectively; former is very trendy at the moment

= Lighthouse, Assembla, JIRA — commercial offerings
aimed at business use

= Launchpad — Ubuntu/Canonical hosted service



Software for running your “forge”

Name Comments For Against
FusionForge, | Forks of “original” Widely used Clumsy compared with
Savane SourceForge code newer software
Trac Minimal, developer- Widely used Single project per
focused code and instance; not intuitive to
tracker application normal people
InDefero Clone of Google Code
Origo Academic project? Ugly; apparently not
Published by ETH widely used
Zurich
Redmine Uses Ruby on Rails Nice to use, has
Mercurial support
Retrospectiva | Reminiscent of GitHub;
uses Ruby on Rails




Version control systems

Centralised

« Subversion the only current practical option
Distributed

e Git and Mercurial most popular, Bzr most unpronounceable

e Git popular with kernel hackers and Uberleet

 Mercurial more limited but easier to get into, better cross-platform
support, possibly easier to manage server for (authentication etc)

Centralised or distributed?

e Distributed may be far more appropriate when hosting or mirroring
software that was originated elsewhere

Single system, or a choice?



Continuous integration systems

= BuildBot (Python)
» Hudson (Java)
= TeamCity (primarily commercial)

= CruiseControl

e Originally Java, Ruby implementation (CruiseControl.rb)
looks promising if using one of the Ruby forge systems



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

