
Ultra-low latency audio and
sensor processing
on the BeagleBone Black

A project by
The Augmented Instruments Lab
at C4DM, Queen Mary University of London

http://bela.io

http://bela.io

The Goal:

High-performance, self-contained
audio and sensor processing

The Goal:
High-performance, self-contained

audio and sensor processing

• Easy low-level
hardware connectivity

• No OS = precise
control of timing

• Very limited CPU  
(8-bit, 16MHz)

• Not good for audio
processing

• Reasonable CPU 
(up to 1GHz ARM)

• High-level hardware
(USB, network etc.)

• Limited low-level
hardware

• Linux OS = high-
latency / underruns

• Fast CPU
• High-level hardware

(USB, network etc.)
• Arduino for low-level
• USB connection =

high-latency, jitter
• Bulky, not self-

contained

hardware

BeagleBone Black
1GHz ARM Cortex-A8

NEON vector floating point
PRU real-time microcontrollers

512MB RAM

Custom Bela Cape
Stereo audio in + out

Stereo 1.1W speaker amps
8x 16-bit analog in + out

16x digital in/out

1ms round-trip audio latency without underruns
High sensor bandwidth: digital I/Os sampled at
44.1kHz; analog I/Os sampled at 22.05kHz
Jitter-free alignment between audio and sensors
Hard real-time audio+sensor performance, but full
Linux APIs still available
Programmable using C/C++, Pd or Faust
Designed for musical instruments and live audio

features

Xenomai Linux kernel C++ programming API
Uses PRU for audio/sensors

Runs at higher priority
than kernel = no dropouts
Buffer sizes as small as 2

Debian distribution
Xenomai hard real-time  

extensions

software

Network,
USB, etc.

Other OS
Processes
Other OS
Processes

Bela software
• Hard real-time environment using Xenomai 

Linux kernel extensions

• Use BeagleBone Programmable Realtime Unit

(PRU) to write straight to hardware

• Sample all matrix ADCs and DACs at  
half audio rate (22.05kHz)

• Buffer sizes as small as 2 samples (90µs latency)

BeagleRT
Audio Task

BeagleRT
System Calls

Other OS
Processes

Linux
Kernel

(slow!)

PRU I2S Audio

SPI ADC/DAC

Network,
USB, etc.

• Speakers with on-
board amps

• Audio In
• Audio Out
• 16x digital I/O
• 8x 16-bit analogue

in (22.05kHz)
• 8x 16-bit analogue

out (22.05kHz)

Find an interactive pin out diagram at http://bela.io/belaDiagram

http://bela.io/belaDiagram

Getting Started

bela.io/code/wiki

http://bela.io/code/wiki

Materials
what you need to get started...

• BeagleBone Black (BBB)
• Bela Cape
• SD card with Bela image
• 3.5mm headphone jack adapter cable
• Mini-USB cable (to attach BBB to computer)
• Also useful for hardware hacking: breadboard,

jumper wires, etc.

Step 1
install BBB drivers and Bela software

Install the BeagleBone Black drivers for your OS:
http://bela.io/code/wiki --> Getting Started

Bela code (for later):
http://bela.io/code --> Downloads --> bela-ableton-workshop.zip

http://bela.io/code/wiki
http://bela.io/code

Step 2: Access the IDE:
http://192.168.7.2:3000

192.168.7.2:3000

API introduction
• In render.cpp....
• Three main functions:
• setup()  

runs once at the beginning, before audio starts  
gives channel and sample rate info

• render()  
called repeatedly by Bela system ("callback")  
passes input and output buffers for audio and sensors

• cleanup()  
runs once at end 
release any resources you have used

• bela.io/code/embedded Code docs

http://bela.io/code/embedded

First test program

float gPhase; /* Phase of the oscillator (global variable) */

void render(BeagleRTContext *context, void *userData)
{
 /* Iterate over the number of audio frames */
 for(unsigned int n = 0; n < context->audioFrames; n++) {
 /* Calculate the output sample based on the phase */
 float out = 0.8f * sinf(gPhase);

 /* Update the phase according to the frequency */
 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
 if(gPhase > 2.0 * M_PI)
 gPhase -= 2.0 * M_PI;

 /* Store the output in every audio channel */
 for(unsigned int channel = 0;

 channel < context->audioChannels; channel++)
 context->audioOut[n * context->audioChannels
 + channel] = out;
 }
}

This runs once
per block

This runs once  
per sample in  

the block 
(audioFrames

gives the number)

This runs
twice per frame,

once for each channel

One-dimensional array holding interleaved audio data

Access the IDE:
http://192.168.7.2:3000

Connect a Potentiometer
a.k.a. a “pot” or knob

analog in 0

GND (ground)5V

The pot has 3 pins
5V and GND on the outside
Bela analog in in the middle

Interactive pinout: http://bela.io/belaDiagram

http://bela.io/belaDiagram

Connect an LED*
* Light-Emitting Diode

560Ω
resistor

analog out 0
(note pinout:

6 4 2 0 1 3 5 7)

GND (ground)

Long lead goes
to the resistor

1. Web interface: http://192.168.7.2:3000  
Edit and compile code on the board

2. Building scripts:
1. Heavy Pd-to-C compiler (https://enzienaudio.com) 

Make audio patches in Pd-vanilla, translate to C and
compile on board

2. Libpd 
Compile Pd patches without Heavy - access to more
objects but not as fast, but good for prototyping

3. Faust 
Build online, export to C++, run on Bela

How to build other projects

http://192.168.7.2:3000
https://enzienaudio.com

Bela and PureData

libpd on Bela

How to run PureData patches on Bela with libpd :

1. Go to http://bela.io/code/files and download the bela-
ableton-2016-04-12.zip archive

2. Unzip the archive into a convenient location and open a
terminal window

3. Navigate into the scripts/ folder and run  
./run_pd_libpd.sh ../projects/heavy/pd/
demo-track/

4. Type "yes" and you should hear something

http://bela.io/code/files

Bela and Faust

• Today: you will have to download the C++ file
generated by the http://faust.grame.fr/
onlinecompiler/ (after setting the -i flag), save it on
your computer and target it with the
build_project.sh script, as in:
 
/path/to/bela/repo/scripts/build_project.sh /path/
to/faust/file/CppCode.cpp

freq = hslider("[1]Frequency[BELA:ANALOG_0]",
440,460,1500,1):smooth(0.999);
pressure = hslider("[2]Pressure[style:knob][BELA:ANALOG_4]", 0.96, 0.2,
2.0, 0.01):smooth(0.999):min(0.99):max(0.2);
gate = hslider("[0]ON/OFF (ASR Envelope)[BELA:DIGITAL_0]",0,0,1,1);

http://faust.grame.fr/onlinecompiler/

Audio In

Audio Out

(headphone)

Speakers

8-ch. 16-bit ADC 8-ch. 16-bit DAC

Bela Cape
I2C and GPIO

Connect a Potentiometer
a.k.a. a “pot” or knob

analog in 0

GND (ground)5V

The pot has 3 pins
5V and GND on the outside
Bela analog in in the middle

Interactive pinout: http://bela.io/belaDiagram

http://bela.io/belaDiagram

analog in 7

GND (ground)5V

Connect a LDR/FSR*
* Light-Dependent Resistor / Force-Sensing Resistor

A0 goes to both
resistor and LDR

Connect an LED*
* Light-Emitting Diode

560Ω
resistor

analog out 0
(note pinout:

6 4 2 0 1 3 5 7)

GND (ground)

Long lead goes
to the resistor

Green pins can
be used for digital

I/O

API introduction
• In render.cpp....
• Three main functions:
• setup()  

runs once at the beginning, before audio starts 
gives channel and sample rate info

• render()  
called repeatedly by Bela system ("callback") 
passes input and output buffers for audio and sensors

• cleanup()  
runs once at end  
release any resources you have used

Real-time audio
• Suppose we have code that runs offline
‣ (non-real time)

• Our goal is to re-implement it online (real time)
‣ Generate audio as we need it!
‣ Why couldn’t we just generate it all in advance, and then

play it when we need it?

• Digital audio is composed of samples
‣ 44100 samples per second in our example
‣ That means we need a new sample every 1/44100

seconds (about every 23µs)
‣ So option #1 is to run a short bit of code every sample

whenever we want to know what to play next
‣ What might be some drawbacks of this approach?

- Can we guarantee we’ll be ready for each new sample?

Block-based processing
• Option #2: Process in blocks of several samples
‣ Basic idea: generate enough samples to get through the

next few milliseconds
‣ Typical block sizes: 32 to 1024 samples

- Usually a power of 2 for reasons having to do with hardware
‣ While the audio hardware is busy playing one block, we

can start calculating the next one so it’s ready on time:

Block 0 Block 1 Block 2 Block 3 ...

Playing (audio hardware)

Calculating
(processor)

Block-based processing
• Option #2: Process in blocks of several samples
‣ Basic idea: generate enough samples to get through the

next few milliseconds
‣ Typical block sizes: 32 to 1024 samples

- Usually a power of 2 for reasons having to do with hardware
‣ While the audio hardware is busy playing one block, we

can start calculating the next one so it’s ready on time:

Block 0 Block 1 Block 2 Block 3 ...

Playing (audio hardware)

Calculating
(processor)

Block-based processing

• Advantages of blocks over individual samples
‣ We need to run our function less often
‣ We always generate one block ahead of what is actually

playing
‣ Suppose one block of samples lasts 5ms, and running

our code takes 1ms
‣ Now, we can tolerate a delay of up to 4ms if the OS is

busy with other tasks
‣ Larger block size = can tolerate more variation in timing

• What is the disadvantage?
‣ Latency (delay)

Latency
• Primary tradeoff for buffering: latency
‣ There will be a delay from input to output

• Let’s consider a full-duplex system (in and out)
‣ Which are the sources of latency?

Analog
Input
xa(t)

ADC
xd[n] = xa(nT)

OS +
Driver H(z)

yd[n]

OS +
DriverDAC

Analog
Output
ya(t) yd[n] = ya(nT)

We have been writing this

Provided by
Linux kernel and
ALSA libraries

Our audio
hardware

Latency: the role of buffering

• Block-based processing introduces latency
‣ This is in addition to whatever was generated by H(z)

• On input side: how is a block of samples created?
‣ For block of size N: we wait until N samples have arrived

from ADC....

Analog
Input
xa(t)

ADC
xd[n] = xa(nT)

OS +
Driver H(z)

yd[n]

OS +
DriverDAC

Analog
Output
ya(t) yd[n] = ya(nT)

Linux + ALSA

x x x x x x x x x x x x x x x x
Block In other words: first

sample in the block is
already N samples old
by the time we get it

Latency: the role of buffering

• On output side: how is a block played by DAC?
‣ We can only start playing once the block arrives!
‣ So how long until the last sample is played?

- N samples after the the block is sent to the hardware

Analog
Input
xa(t)

ADC
xd[n] = xa(nT)

OS +
Driver H(z)

yd[n]

OS +
DriverDAC

Analog
Output
ya(t) yd[n] = ya(nT)

Linux + ALSA

x x x x x x x x x x x x x x x x
Block

At any given time, we are reading from ADC,
processing a block, and writing to DAC

Buffering illustration
In

pu
t

O
ut

pu
t

H
(z

)

3. Next cycle, we send this
buffer to the output

1. First we fill up
a buffer of samples

2. We process this buffer
while the next one fills upTotal latency is 2x buffer length

API introduction

• Sensor ("matrix" = ADC+DAC) data is gathered
automatically alongside audio

• Audio runs at 44.1kHz; sensor data at 22.05kHz
• context holds buffers plus information on number of

frames and other info
• Your job as programmer: render one buffer of audio

and sensors and finish as soon as possible!
• API documentation: http://beaglert.cc

void render(BeagleRTContext *context, void *userData)

http://beaglert.cc

First test program

float gPhase; /* Phase of the oscillator (global variable) */

void render(BeagleRTContext *context, void *userData)
{
 /* Iterate over the number of audio frames */
 for(unsigned int n = 0; n < context->audioFrames; n++) {
 /* Calculate the output sample based on the phase */
 float out = 0.8f * sinf(gPhase);

 /* Update the phase according to the frequency */
 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
 if(gPhase > 2.0 * M_PI)
 gPhase -= 2.0 * M_PI;

 /* Store the output in every audio channel */
 for(unsigned int channel = 0;

 channel < context->audioChannels; channel++)
 context->audioOut[n * context->audioChannels
 + channel] = out;
 }
}

This runs once
per block

This runs once  
per sample in  

the block 
(audioFrames

gives the number)

This runs
twice per frame,

once for each channel

One-dimensional array holding interleaved audio data

Interleaving
• Two ways for multichannel audio to be stored
‣ Way 1: Separate memory buffers per channel

- This is known as non-interleaved format
- Typically presented in C as a two-dimensional array: 
float **sampleBuffers

‣ Way 2: One memory buffer for all channels
- Alternating data between channels

- This is known as interleaved format
- Typically presented in C as a one-dimensional array: 
float *sampleBuffer

L L L L L L L L

R R R R R R R R

L L L LR R R R

• We accessed non-interleaved data like this:
‣ float in = sampleBuffers[channel][n];

• How do we do the same thing with interleaving?
‣ float in = sampleBuffers[***what goes here?***];

‣ What else do we need to know?
- Number of channels

‣ float in = sampleBuffers[numChannels*n + channel];

‣ Each sample advances numChannels in the buffer
‣ The offset tells us which channel we’re reading

Interleaving

L L L LR R R R

L L L L L L L L

1 3 12 4 2 3 4

1 ch:

2 ch:

4 ch:

First test program

float gPhase; /* Phase of the oscillator (global variable) */

void render(BeagleRTContext *context, void *userData)
{
 /* Iterate over the number of audio frames */
 for(unsigned int n = 0; n < context->audioFrames; n++) {
 /* Calculate the output sample based on the phase */
 float out = 0.8f * sinf(gPhase);

 /* Update the phase according to the frequency */
 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
 if(gPhase > 2.0 * M_PI)
 gPhase -= 2.0 * M_PI;

 /* Store the output in every audio channel */
 for(unsigned int channel = 0;

 channel < context->audioChannels; channel++)
 context->audioOut[n * context->audioChannels
 + channel] = out;
 }
}

This runs once
per block

This runs once  
per sample in  

the block 
(audioFrames

gives the number)

This runs
twice per frame,

once for each channel

One-dimensional array holding interleaved audio data

Blocks and phase: task
• Need to preserve state between calls to render()
‣ When you call render() a second time, it should

remember where it left off the first time
‣ But local variables in the function all disappear when the

function returns!
‣ Solution: use global variables to save the state

- Okay, cleaner solutions exist: keep a structure that you pass by
pointer as an argument to render(). Save your state there.

- Or in C++, use instance variables (variables that are declared in
the class rather than within a method). But we’ll save that for later.

• If we don’t store phase in a global variable, we get:

• But what we want is this:

Blocks and phase

Block 0 Block 1 Block 2

Block 0 Block 1 Block 2

First test program

float gPhase; /* Phase of the oscillator (global variable) */

void render(BeagleRTContext *context, void *userData)
{
 /* Iterate over the number of audio frames */
 for(unsigned int n = 0; n < context->audioFrames; n++) {
 /* Calculate the output sample based on the phase */
 float out = 0.8f * sinf(gPhase);

 /* Update the phase according to the frequency */
 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
 if(gPhase > 2.0 * M_PI)
 gPhase -= 2.0 * M_PI;

 /* Store the output in every audio channel */
 for(unsigned int channel = 0;

 channel < context->audioChannels; channel++)
 context->audioOut[n * context->audioChannels
 + channel] = out;
 }
}

This remembers where we left off

This updates the
phase each sample

and keeps it in
the 0 to 2π range

Analog input data format

• Data type is float: just like audio
‣ But range is 0.0 to 1.0

- This is internally converted from raw values 0 to 65535
‣ Compare this to audio, which is -1.0 to 1.0

L L L LR R R R

0 2 41 3 5 6 7

Audio
(2 ch)

ADC
(8 ch) 0 2 41 3 5 6 7

1 analog frame (22.05kHz)
= 2 audio frames (44.1kHz)

Analog input
float gPhase;
float gInverseSampleRate; /* Pre-calculated for convenience */
int gAudioFramesPerAnalogFrame;

extern int gSensorInputFrequency; /* Which analog pin controls frequency */
extern int gSensorInputAmplitude; /* Which analog pin controls amplitude */

void render(BeagleRTContext *context, void *userData)
{
 float frequency = 440.0;
 float amplitude = 0.8;

 for(unsigned int n = 0; n < context->audioFrames; n++) {
 /* There are twice as many audio frames as matrix frames since

audio sample rate is twice as high */
 if(!(n % gAudioFramesPerAnalogFrame)) {
 /* Every other audio sample: update frequency and amplitude */
 frequency = map(analogReadFrame(context,

 n/gAudioFramesPerAnalogFrame,
 gSensorInputFrequency),

 0, 1, 100, 1000);
 amplitude = analogReadFrame(context,
 n/gAudioFramesPerAnalogFrame,
 gSensorInputAmplitude);
 }

 float out = amplitude * sinf(gPhase);

 for(unsigned int channel = 0; channel < context->audioChannels; channel++)
 context->audioOut[n * context->audioChannels + channel] = out;

 gPhase += 2.0 * M_PI * frequency * gInverseSampleRate;
 if(gPhase > 2.0 * M_PI)
 gPhase -= 2.0 * M_PI;
 }
}

This runs every
other sample

Read the analog
input at the

specified frame

Map the 0-1 input
range to a frequency

range

Digital I/O
void render(BeagleRTContext *context, void *userData)
{
 static int count = 0; // counts elapsed samples
 float interval = 0.5; // how often to toggle the LED (in seconds)
 static int status = GPIO_LOW;

 for(unsigned int n = 0; n < context->digitalFrames; n++) {
 /* Check if enough samples have elapsed that it's time to
 blink to the LED */
 if(count == context->digitalSampleRate * interval) {
 count = 0; // reset the counter
 if(status == GPIO_LOW) {
 /* Toggle the LED */
 digitalWriteFrame(context, n, P8_07, status);
 status = GPIO_HIGH;
 }
 else {
 /* Toggle the LED */
 digitalWriteFrame(context, n, P8_07, status);
 status = GPIO_LOW;
 }
 }

 /* Increment the count once per frame */
 count++;
 }
}

This runs once
per digital frame

Write the digital
output at the

specified frame

To manage timing, count
samples rather than

using delays

Stay tuned! Join the announcement list at
http://bela.io

http://bela.io

